Skip to main content
Erschienen in: Environmental Earth Sciences 5/2019

01.03.2019 | Original Article

Installation of a thermal energy storage site in an abandoned mine in Picardy (France). Part 1: Selection criteria and equipment of the experimental site

verfasst von: Gombert Philippe, Gueye Abdoulaye, Ben Hamed Haïkel, Beji Hassen, Laouafa Farid

Erschienen in: Environmental Earth Sciences | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As part of the new French law on energy transition, the Demosthene research project is studying the possibility of reusing old abandoned mines to store thermal energy in the Picardy region. The aim is to store the heat required for a small collective unit, which corresponds to a volume of water of 2000–8000 m3, depending on the temperature (from 15 to 70 °C). An inventory shows around 3700 theoretically available sites in this region. These are mostly shallow dry mines, or mines that are partially flooded with around 1 m of water depth. Based on this water depth and an extraction ratio of 75%, the required mine area is approximately 10,000 m2. From the 40 sites that have a sufficient surface area, only 1 is naturally flooded, although statistically many others will exist that are currently not known. For this experimental site to be reproducible, the decision was made to select dry mines but with a sufficient area to achieve an artificial flooding device. Theoretically, this represents more than a thousand sites in Picardy. The most interesting one is the old limestone mine of Saint-Maximin, where a sealed basin can be built. Before installing an experimental underground thermal energy storage basin in this site, the thermomechanical and hydrothermal behaviors were modeled. The aim was to optimize the position of the various sensors that will be used to monitor the basin, and to predict the future deformations induced on the walls by the thermal variations. A 100-m3 basin, sealed with a liner, was built and fitted with 18 sensors to measure temperature, humidity and strain. These sensors allow the stored water, the rock walls and the surrounding atmosphere to be monitored. This device must now operate for 6 months, i.e. a complete heating–cooling cycle, and its results will be analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Demonstrateur de Stockage d’énergie Thermique en carrière souterraine partiellement Ennoyée (Thermal energy storage demonstrator in partially flooded abandoned old mines).
 
2
i.e. including the energy needed for electricity production and transport (in France, 1 Wh billed by the electricity supplier corresponds to 2.58 Wh of primary energy or Whpe).
 
3
i.e. the “Royal Mirror Glass Works” that was founded in 1665 by Colbert, Louis XIV’s Finance Minister.
 
Literatur
Zurück zum Zitat Allen RD, Kannberg LD, Raymond JR (1984) Seasonal thermal energy storage. Pacific Northwest Laboratory, technical report PNL-5067, p 130 Allen RD, Kannberg LD, Raymond JR (1984) Seasonal thermal energy storage. Pacific Northwest Laboratory, technical report PNL-5067, p 130
Zurück zum Zitat Arnould M, Deveughele M, Efforsat J (1983) Utilisation de carrières souterraines de la région parisienne pour stockage intersaisonnier d’énergie solaire pour l’habitat. La Houille Blanche 3(4):283–288 Arnould M, Deveughele M, Efforsat J (1983) Utilisation de carrières souterraines de la région parisienne pour stockage intersaisonnier d’énergie solaire pour l’habitat. La Houille Blanche 3(4):283–288
Zurück zum Zitat Axelsson CL, Carlstedt A, Johnson J, Karlqvist L, Lintu Y, Olsson T, Särnblad L (1985) Hydrogeological investigations at the storage cavern for heated water at Avesta. In: Hydrogeology in the service of man, proc. of the 18th cong. of the int. assoc. of hydrogeologists, Cambridge, pp 104–116 Axelsson CL, Carlstedt A, Johnson J, Karlqvist L, Lintu Y, Olsson T, Särnblad L (1985) Hydrogeological investigations at the storage cavern for heated water at Avesta. In: Hydrogeology in the service of man, proc. of the 18th cong. of the int. assoc. of hydrogeologists, Cambridge, pp 104–116
Zurück zum Zitat Barron RF, Barron BR (2012) Design for thermal stresses. Wiley, New York Barron RF, Barron BR (2012) Design for thermal stresses. Wiley, New York
Zurück zum Zitat Bourbiaux B (2011) ATES contribution to the housing energy balance: a simple assessment methodology. Oil Gas Sci Technol Rev IFP Energies Nouvelles Nr 66(1):21–36CrossRef Bourbiaux B (2011) ATES contribution to the housing energy balance: a simple assessment methodology. Oil Gas Sci Technol Rev IFP Energies Nouvelles Nr 66(1):21–36CrossRef
Zurück zum Zitat Brunström C, Larsson M, Holst P, Zinko H, Hillström CG (1985) The Lyckebo rock cavern seasonal storage plant after one year of operation. Sunworld 9(3):93–95 Brunström C, Larsson M, Holst P, Zinko H, Hillström CG (1985) The Lyckebo rock cavern seasonal storage plant after one year of operation. Sunworld 9(3):93–95
Zurück zum Zitat Courtois N, Marchal JP, Menjoz A, Monnot P, Noël Y, Petit V, Thiéry D, Grisey A, Grasselly D (2007) Application du stockage thermique en aquifère au chauffage et au refroidissement de serres maraîchères en France: étude de préfaisabilité. Rapport BRGM/RP 55481-FR Courtois N, Marchal JP, Menjoz A, Monnot P, Noël Y, Petit V, Thiéry D, Grisey A, Grasselly D (2007) Application du stockage thermique en aquifère au chauffage et au refroidissement de serres maraîchères en France: étude de préfaisabilité. Rapport BRGM/RP 55481-FR
Zurück zum Zitat Dannemand AJ, Bødker L, Jensen MV (2013) Large thermal energy storage at Marstal district heating. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris 2013, pp 3351–3354 Dannemand AJ, Bødker L, Jensen MV (2013) Large thermal energy storage at Marstal district heating. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris 2013, pp 3351–3354
Zurück zum Zitat DGALN (2011) Réglementation thermique 2012: un saut énergétique pour les bâtiments neufs. Direction Générale de l’Aménagement, du Logement et de la Nature, avril 2011 DGALN (2011) Réglementation thermique 2012: un saut énergétique pour les bâtiments neufs. Direction Générale de l’Aménagement, du Logement et de la Nature, avril 2011
Zurück zum Zitat Djizanne H, Bérest P, Brouard B (2012) Tensile effective stresses in hydrocarbon storage caverns. In: Solution mining res. inst., fall 2012 technical conf. Bremen, Germany, 1–2 October 2012 Djizanne H, Bérest P, Brouard B (2012) Tensile effective stresses in hydrocarbon storage caverns. In: Solution mining res. inst., fall 2012 technical conf. Bremen, Germany, 1–2 October 2012
Zurück zum Zitat Fjaer E, Holt RM, Horsrud P, Raaen AM, Risnes R (1992) Petroleum related rock mechanics. Elsevier, Amsterdam Fjaer E, Holt RM, Horsrud P, Raaen AM, Risnes R (1992) Petroleum related rock mechanics. Elsevier, Amsterdam
Zurück zum Zitat Fogelholm CJ, Gebremedhin A, Kim S, Pedersen L, Savola T, Stang J, Tveit TM, Zinko H (2008) Improved cogeneration and heat utilization in DH networks. In: The 11th int. symp. on district heating and cooling, August 31–September 2, 2008, Reykjavik, Iceland, pp 1–2 Fogelholm CJ, Gebremedhin A, Kim S, Pedersen L, Savola T, Stang J, Tveit TM, Zinko H (2008) Improved cogeneration and heat utilization in DH networks. In: The 11th int. symp. on district heating and cooling, August 31–September 2, 2008, Reykjavik, Iceland, pp 1–2
Zurück zum Zitat Gedung H, Margen P (1988) Converted oil cavern used for thermal energy storage in STES. Newsletter 10:2 Gedung H, Margen P (1988) Converted oil cavern used for thermal energy storage in STES. Newsletter 10:2
Zurück zum Zitat Gurtin ME, Fried E, Anand L (2009) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge Gurtin ME, Fried E, Anand L (2009) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge
Zurück zum Zitat Hellström G (2012) UTES experiences from Sweden. In: Underground thermal energy storage seminar. 31 May 2012, London Hellström G (2012) UTES experiences from Sweden. In: Underground thermal energy storage seminar. 31 May 2012, London
Zurück zum Zitat Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, New York Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, New York
Zurück zum Zitat IEA (1983) Central solar heating plants with seasonal storage. In: Int. energy agency, solar heating and cooling program, task VII, June 1983, p 212 IEA (1983) Central solar heating plants with seasonal storage. In: Int. energy agency, solar heating and cooling program, task VII, June 1983, p 212
Zurück zum Zitat INERIS (2016) Le stockage souterrain dans le contexte de la transition énergétique: maîtrise des risques et impacts. Dossier INERIS Références, septembre 2016, http://www.ineris.fr. Accessed 25 July 2018 INERIS (2016) Le stockage souterrain dans le contexte de la transition énergétique: maîtrise des risques et impacts. Dossier INERIS Références, septembre 2016, http://​www.​ineris.​fr. Accessed 25 July 2018
Zurück zum Zitat Kabuth A, Dahmke A, Beyer C, Bilke L, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke UJ, Köber R, Rabbel W, Schanz T, Schäfer T, Würdemann H, Bauer S (2016) Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environ Earth Sci 76:23. https://doi.org/10.1007/s12665-016-6319-5 CrossRef Kabuth A, Dahmke A, Beyer C, Bilke L, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke UJ, Köber R, Rabbel W, Schanz T, Schäfer T, Würdemann H, Bauer S (2016) Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environ Earth Sci 76:23. https://​doi.​org/​10.​1007/​s12665-016-6319-5 CrossRef
Zurück zum Zitat Martna J (1983) The Avesta research plant for hot water storage—state of the project, vol 16. Swedish Council for Building Research, Stockholm, Suède, 1983, pp 367–372 Martna J (1983) The Avesta research plant for hot water storage—state of the project, vol 16. Swedish Council for Building Research, Stockholm, Suède, 1983, pp 367–372
Zurück zum Zitat Midttomme K, Banks D, Kalskin Ramstad R, Saether OM, Skarphagen H (2008) Ground-source heat pumps and underground thermal energy storage: energy for the future. Geol Surv Nor Spec Publ 11:93–98 Midttomme K, Banks D, Kalskin Ramstad R, Saether OM, Skarphagen H (2008) Ground-source heat pumps and underground thermal energy storage: energy for the future. Geol Surv Nor Spec Publ 11:93–98
Zurück zum Zitat Montjoie A (1981) Stockage de chaleur dans les excavations à ciel ouvert ou souterraines. Revue Française de Géotechnique 14BIS:241–247CrossRef Montjoie A (1981) Stockage de chaleur dans les excavations à ciel ouvert ou souterraines. Revue Française de Géotechnique 14BIS:241–247CrossRef
Zurück zum Zitat Nielsen K (2003) Thermal energy storage—a state-of-the-art. In: A report within the research program smart energy-efficient buildings at NTNU and SINTEF 2002–2006 Nielsen K (2003) Thermal energy storage—a state-of-the-art. In: A report within the research program smart energy-efficient buildings at NTNU and SINTEF 2002–2006
Zurück zum Zitat Paksoy HO, Andersson O, Abaci S, Evliya H, Turgut B (2000) Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in aquifer. Renew Energy 19:117–122CrossRef Paksoy HO, Andersson O, Abaci S, Evliya H, Turgut B (2000) Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in aquifer. Renew Energy 19:117–122CrossRef
Zurück zum Zitat Sanner B, Bartels J (2009) Thermal energy storage in aquifers three decades of experience gained, and what are future prospects? In: EGEC, IFP. Deep saline aquifers for geological storage of CO2 and energy, Rueil-Malmaison, France, 17 April 2009 Sanner B, Bartels J (2009) Thermal energy storage in aquifers three decades of experience gained, and what are future prospects? In: EGEC, IFP. Deep saline aquifers for geological storage of CO2 and energy, Rueil-Malmaison, France, 17 April 2009
Zurück zum Zitat Seibt P, Kabus F (2006) Aquifer thermal energy storage-projects implemented in Germany. In: Proc. ECOSTOCK 2006, Stockton, NJ, USA Seibt P, Kabus F (2006) Aquifer thermal energy storage-projects implemented in Germany. In: Proc. ECOSTOCK 2006, Stockton, NJ, USA
Zurück zum Zitat Sipilä K (1990) Converting an old rock cavern into heat storage in Finland. Fernwärme Int Dist Heat Fernwärme Chauffage Urbain 19:382–836 Sipilä K (1990) Converting an old rock cavern into heat storage in Finland. Fernwärme Int Dist Heat Fernwärme Chauffage Urbain 19:382–836
Zurück zum Zitat Somerton WH (1992) Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier, Amsterdam Somerton WH (1992) Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier, Amsterdam
Zurück zum Zitat Tritsch JJ (2007) Mise en sécurité des cavités souterraines d’origine anthropique: surveillance–traitement. In: Guide technique. Rapport INERIS-DRS-07-86042-02484A, 15/02/2007 Tritsch JJ (2007) Mise en sécurité des cavités souterraines d’origine anthropique: surveillance–traitement. In: Guide technique. Rapport INERIS-DRS-07-86042-02484A, 15/02/2007
Zurück zum Zitat Verhoeven R, Willems E, Harcouët-Menou V, De Boever E, Hiddes L, Op’t Veld P, Demollin E (2014) Minewater 2.0 project in Heerlen the Netherlands: transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling. Energy Proced 46:58–67. https://doi.org/10.1016/j.egypro.2014.01.158 CrossRef Verhoeven R, Willems E, Harcouët-Menou V, De Boever E, Hiddes L, Op’t Veld P, Demollin E (2014) Minewater 2.0 project in Heerlen the Netherlands: transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling. Energy Proced 46:58–67. https://​doi.​org/​10.​1016/​j.​egypro.​2014.​01.​158 CrossRef
Zurück zum Zitat Walton M, McSwiggen P (1982) Heat storage in deep mines at Ely, Minesota. In: STES Newsletter, September 1982, vol IV, n°4 Walton M, McSwiggen P (1982) Heat storage in deep mines at Ely, Minesota. In: STES Newsletter, September 1982, vol IV, n°4
Zurück zum Zitat Wille A, Lottner V (2006) R&D program on thermal energy storage in Germany. In: Proc. ECOSTOCK 2006, Stockton, NJ, USA Wille A, Lottner V (2006) R&D program on thermal energy storage in Germany. In: Proc. ECOSTOCK 2006, Stockton, NJ, USA
Metadaten
Titel
Installation of a thermal energy storage site in an abandoned mine in Picardy (France). Part 1: Selection criteria and equipment of the experimental site
verfasst von
Gombert Philippe
Gueye Abdoulaye
Ben Hamed Haïkel
Beji Hassen
Laouafa Farid
Publikationsdatum
01.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 5/2019
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-019-8128-0

Weitere Artikel der Ausgabe 5/2019

Environmental Earth Sciences 5/2019 Zur Ausgabe