Skip to main content
Erschienen in: Journal of Intelligent Information Systems 1/2013

01.02.2013

Instrument identification and pitch estimation in multi-timbre polyphonic musical signals based on probabilistic mixture model decomposition

verfasst von: Ying Hu, Guizhong Liu

Erschienen in: Journal of Intelligent Information Systems | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a method based on probabilistic mixture model decomposition that can simultaneously identify musical instrument types, estimate pitches and assign each pitch to its source instrument in monaural polyphonic audio containing multiple sources. In the proposed system, the probability density function (PDF) of the observed mixture note is treated as a weighted sum approximation of all possible note models. These note models, covering 14 instruments and all their possible pitches, describe their dynamic frequency envelopes in terms of probability. The weight coefficients, indicating the probabilities of the existence of pitches of a certain type of instrument, are estimated using the Expectation-Maximization (EM) algorithm. The weight coefficients are used to detect the types of source instruments and the pitches. The results of experiments involving 14 instruments within a designated pitch range F3–F6 (37 pitches) demonstrate a good discrimination capability, especially in instrument identification and instrument-pitch identification. For the entire system including the note onset detection tool, using quartet polyphonic recordings, the average F-measure values of instrument-pitch identification, instrument identification and pitch estimation were 55.4, 62.5 and 86 % respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barbedo, J. G. A., & Tzanetakis, G. (2011). Musical instrument classification using individual partials. IEEE Transactions on Audio, Speech, and Language Processing, 19(1), 111–122.CrossRef Barbedo, J. G. A., & Tzanetakis, G. (2011). Musical instrument classification using individual partials. IEEE Transactions on Audio, Speech, and Language Processing, 19(1), 111–122.CrossRef
Zurück zum Zitat Bay, M., & Beauchamp, J. (2006). Harmonic source separation using prestored spectra. In Indep. Compon. Anal. and Blind Signal Separ. (pp. 561–568). Bay, M., & Beauchamp, J. (2006). Harmonic source separation using prestored spectra. In Indep. Compon. Anal. and Blind Signal Separ. (pp. 561–568).
Zurück zum Zitat Bertin, N., Badeau, R., Vincent, E. (2009). Fast Bayesian NMF algorithms enforcing harmonicity and temporal continuity in polyphonic music transcription. In IEEE Workshop Appl. Signal Process. Audio Acoust. (pp. 29–32). NY, USA: New Paltz. Bertin, N., Badeau, R., Vincent, E. (2009). Fast Bayesian NMF algorithms enforcing harmonicity and temporal continuity in polyphonic music transcription. In IEEE Workshop Appl. Signal Process. Audio Acoust. (pp. 29–32). NY, USA: New Paltz.
Zurück zum Zitat Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute, 4, 126. Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute, 4, 126.
Zurück zum Zitat Brown, J. C. (1991). Calculation of a constant Q spectral transform (Vol. 89, Vol. 1): Vision and modeling group, media laboratory, Massachusetts Institute of Technology. Brown, J. C. (1991). Calculation of a constant Q spectral transform (Vol. 89, Vol. 1): Vision and modeling group, media laboratory, Massachusetts Institute of Technology.
Zurück zum Zitat Burred, J.J., Robel, A., Sikora, T. (2010). Dynamic spectral envelope modeling for timbre analysis of musical instrument sounds. Audio, Speech, and Language Processing, IEEE Transactions on, 18(3), 663–674.CrossRef Burred, J.J., Robel, A., Sikora, T. (2010). Dynamic spectral envelope modeling for timbre analysis of musical instrument sounds. Audio, Speech, and Language Processing, IEEE Transactions on, 18(3), 663–674.CrossRef
Zurück zum Zitat Dessein, A., Cont, A., Lemaitre, G. (2010). Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence. In Int. soc. for music inf. retrieval conf., Utrecht, Netherlands. Dessein, A., Cont, A., Lemaitre, G. (2010). Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence. In Int. soc. for music inf. retrieval conf., Utrecht, Netherlands.
Zurück zum Zitat Dziubinski, M., Dalka, P., Kostek, B. (2005). Estimation of musical sound separation algorithm effectiveness employing neural networks. Journal of Intelligent Information Systems, 24(2), 133–157.CrossRef Dziubinski, M., Dalka, P., Kostek, B. (2005). Estimation of musical sound separation algorithm effectiveness employing neural networks. Journal of Intelligent Information Systems, 24(2), 133–157.CrossRef
Zurück zum Zitat Essid, S., Richard, G., David, B. (2006). Musical instrument recognition by pairwise classification strategies. IEEE Transactions on Audio, Speech, and Language Processing, 14(4), 1401–1412.CrossRef Essid, S., Richard, G., David, B. (2006). Musical instrument recognition by pairwise classification strategies. IEEE Transactions on Audio, Speech, and Language Processing, 14(4), 1401–1412.CrossRef
Zurück zum Zitat Goto, M. (2004). A predominant-F0 estimation method for polyphonic musical audio signals. In Proc. int. cong. on acoustics, ICA (pp. 1085–1088). Goto, M. (2004). A predominant-F0 estimation method for polyphonic musical audio signals. In Proc. int. cong. on acoustics, ICA (pp. 1085–1088).
Zurück zum Zitat Grindlay, G., & Ellis, D.P.W. (2010). A probabilistic subspace model for multi-instrument polyphonic transcription. In Int. soc. for music inf. retrieval conf., Utrecht, Netherlands (pp. 21–26). Grindlay, G., & Ellis, D.P.W. (2010). A probabilistic subspace model for multi-instrument polyphonic transcription. In Int. soc. for music inf. retrieval conf., Utrecht, Netherlands (pp. 21–26).
Zurück zum Zitat Heittola, T., Klapuri, A., Virtanen, T. (2009). Musical instrument recognition in polyphonic audio using source-filter model for sound separation. In Int. soc. for music inf. retrieval conf., Kobe, Japan (pp. 327–332). Heittola, T., Klapuri, A., Virtanen, T. (2009). Musical instrument recognition in polyphonic audio using source-filter model for sound separation. In Int. soc. for music inf. retrieval conf., Kobe, Japan (pp. 327–332).
Zurück zum Zitat Hofmann, T. (1999). Probabilistic latent semantic indexing. In ACM proceedings of twenty-second annual int. SIGIR conf (pp. 50–57). New York: ACM. Hofmann, T. (1999). Probabilistic latent semantic indexing. In ACM proceedings of twenty-second annual int. SIGIR conf (pp. 50–57). New York: ACM.
Zurück zum Zitat Hu, Y., & Liu, G. (2011). Dynamic characteristics of musical note for musical instrument classification. In IEEE int. conf. on signal processing, communications and computing (pp. 1–6). Xi’an, China: IEEE. Hu, Y., & Liu, G. (2011). Dynamic characteristics of musical note for musical instrument classification. In IEEE int. conf. on signal processing, communications and computing (pp. 1–6). Xi’an, China: IEEE.
Zurück zum Zitat Jiang, W., Wieczorkowska, A., & Raś, Z. (2009). Music instrument estimation in polyphonic sound based on short-term spectrum match. Foundations of Computational Intelligence, 2, 259–273. Jiang, W., Wieczorkowska, A., & Raś, Z. (2009). Music instrument estimation in polyphonic sound based on short-term spectrum match. Foundations of Computational Intelligence, 2, 259–273.
Zurück zum Zitat Joder, C., Essid, S., Richard, G. (2009). Temporal integration for audio classification with application to musical instrument classification. Audio, Speech, and Language Processing, IEEE Transactions on, 17(1), 174–186.CrossRef Joder, C., Essid, S., Richard, G. (2009). Temporal integration for audio classification with application to musical instrument classification. Audio, Speech, and Language Processing, IEEE Transactions on, 17(1), 174–186.CrossRef
Zurück zum Zitat Kameoka, H., Nishimoto, T., Sagayama, S. (2007). A multipitch analyzer based on harmonic temporal structured clustering. IEEE Transactions on Audio, Speech, and Language Processing, 15(3), 982–994.CrossRef Kameoka, H., Nishimoto, T., Sagayama, S. (2007). A multipitch analyzer based on harmonic temporal structured clustering. IEEE Transactions on Audio, Speech, and Language Processing, 15(3), 982–994.CrossRef
Zurück zum Zitat Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G. (2007). Instrogram: probabilistic representation of instrument existence for polyphonic music. Information and Media Technologies, 2(1), 279–291. Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G. (2007). Instrogram: probabilistic representation of instrument existence for polyphonic music. Information and Media Technologies, 2(1), 279–291.
Zurück zum Zitat Kostek, B. (2004). Musical instrument classification and duet analysis employing music information retrieval techniques. Proceedings of the IEEE, 92(4), 712–729.CrossRef Kostek, B. (2004). Musical instrument classification and duet analysis employing music information retrieval techniques. Proceedings of the IEEE, 92(4), 712–729.CrossRef
Zurück zum Zitat Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., Kubik-Komar, A. (2009). Musical instruments in random forest. Foundations of Intelligent Systems, 281–290. Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., Kubik-Komar, A. (2009). Musical instruments in random forest. Foundations of Intelligent Systems, 281–290.
Zurück zum Zitat Li, Y., Woodruff, J., Wang, D.L. (2009). Monaural musical sound separation based on pitch and common amplitude modulation. IEEE Transactions on Audio, Speech, and Language Processing, 17(7), 1361–1371.CrossRef Li, Y., Woodruff, J., Wang, D.L. (2009). Monaural musical sound separation based on pitch and common amplitude modulation. IEEE Transactions on Audio, Speech, and Language Processing, 17(7), 1361–1371.CrossRef
Zurück zum Zitat Loughran, R., Walker, J., O’Neill, M., O’Farrell, M. (2008). The use of mel-frequency cepstral coefficients in musical instrument identification. In Proc. of the international computer music conference (ICMC), SARC, Belfast, N. Ireland. Loughran, R., Walker, J., O’Neill, M., O’Farrell, M. (2008). The use of mel-frequency cepstral coefficients in musical instrument identification. In Proc. of the international computer music conference (ICMC), SARC, Belfast, N. Ireland.
Zurück zum Zitat Rao, P., & Shandilya, S. (2004). On the detection of melodic pitch in a percussive background. Journal of Audio Engineering Soc., 52(4), 378–391. Rao, P., & Shandilya, S. (2004). On the detection of melodic pitch in a percussive background. Journal of Audio Engineering Soc., 52(4), 378–391.
Zurück zum Zitat Shashanka, M., Raj, B., Smaragdis, P. (2008). Probabilistic latent variable models as nonnegative factorizations. Computational Intelligence and Neuroscience, 2008, 947438.CrossRef Shashanka, M., Raj, B., Smaragdis, P. (2008). Probabilistic latent variable models as nonnegative factorizations. Computational Intelligence and Neuroscience, 2008, 947438.CrossRef
Zurück zum Zitat Smaragdis, P., Raj, B., Shashanka, M. (2006). A probabilistic latent variable model for acoustic modeling. In Advances in Models for Acoustic Processing, NIPS (Vol. 146). Smaragdis, P., Raj, B., Shashanka, M. (2006). A probabilistic latent variable model for acoustic modeling. In Advances in Models for Acoustic Processing, NIPS (Vol. 146).
Zurück zum Zitat Vincent, E., Bertin, N., Badeau, R. (2010). Adaptive harmonic spectral decomposition for multiple pitch estimation. Audio, Speech, and Language Processing, IEEE Transactions on, 18(3), 528–537.CrossRef Vincent, E., Bertin, N., Badeau, R. (2010). Adaptive harmonic spectral decomposition for multiple pitch estimation. Audio, Speech, and Language Processing, IEEE Transactions on, 18(3), 528–537.CrossRef
Zurück zum Zitat Wieczorkowska, A.A., & Kubera, E. (2010). Identification of a dominating instrument in polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. Journal of Intelligent Information Systems, 34(3), 275–303.CrossRef Wieczorkowska, A.A., & Kubera, E. (2010). Identification of a dominating instrument in polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. Journal of Intelligent Information Systems, 34(3), 275–303.CrossRef
Zurück zum Zitat Wu, J., Vincent, E., Raczynski, S., Nishimoto, T., Ono, N., Sagayama, S. (2011). Polyphonic pitch estimation and instrument identification by joint modeling of sustained and attack sounds. IEEE Journal of Selected Topics in Signal Processing, 5(6), 1124–1132.CrossRef Wu, J., Vincent, E., Raczynski, S., Nishimoto, T., Ono, N., Sagayama, S. (2011). Polyphonic pitch estimation and instrument identification by joint modeling of sustained and attack sounds. IEEE Journal of Selected Topics in Signal Processing, 5(6), 1124–1132.CrossRef
Metadaten
Titel
Instrument identification and pitch estimation in multi-timbre polyphonic musical signals based on probabilistic mixture model decomposition
verfasst von
Ying Hu
Guizhong Liu
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Journal of Intelligent Information Systems / Ausgabe 1/2013
Print ISSN: 0925-9902
Elektronische ISSN: 1573-7675
DOI
https://doi.org/10.1007/s10844-012-0220-9

Weitere Artikel der Ausgabe 1/2013

Journal of Intelligent Information Systems 1/2013 Zur Ausgabe