Skip to main content
Erschienen in: Innovative Infrastructure Solutions 3/2021

01.09.2021 | Technical paper

Insulation efficiency of alkali-activated lightweight mortars containing different ratios of binder/expanded perlite fine aggregate

verfasst von: Alaa M. Rashad, Mervat H. Khalil, M. H. El-Nashar

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the current paper, an attempt has been done to produce insulating materials based on alkali-activated slag (AAS) mortars, free from any foaming/blowing agent, with a good balance between suitable compressive strength and low thermal conductivity. Due to its prospective properties, expanded perlite (EP) was used as a lightweight fine aggregate. For AAS lightweight mortars, different binder/EP ratios of ½, ¼ and 1/6, by volume, were used. Traditional Portland cement mortar (TC) with a binder/siliceous sand ratio of ½ as well as AAS mortar with a binder/siliceous sand ratio of ½, by volume, were prepared for comparison purposes. To obtain more insulating materials, slag in the mixture containing binder/EP ratio of 1/6 was partially replaced with 50% solely metakaolin (MK) and 50% solely fly ash (FA). The bulk density, compressive strength, total porosity, thermal conductivity and thermal resistance for all mortar types were measured. The samples were analyzed by scanning electron microscopy (SEM). The results showed that good insulation materials can be produced without adding any foaming agent, of which low thermal conductivities (0.995–0.158 W/mK), low densities (2080–670 kg/m3), high total porosities (24.22–75.1%) and acceptable compressive strength (21.6–5 MPa) can be obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu T, Tan Z, Xu C, Chen H, Li Z (2020) Study on deep reinforcement learning techniques for building energy consumption forecasting. Energy and Buildings 208:109675CrossRef Liu T, Tan Z, Xu C, Chen H, Li Z (2020) Study on deep reinforcement learning techniques for building energy consumption forecasting. Energy and Buildings 208:109675CrossRef
2.
Zurück zum Zitat Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA (2015) A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev 43:843–862CrossRef Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA (2015) A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev 43:843–862CrossRef
3.
Zurück zum Zitat Aditya L, Mahlia T, Rismanchi B, Ng H, Hasan M, Metselaar H, Muraza O, Aditiya H (2017) A review on insulation materials for energy conservation in buildings. Renew Sustain Energy Rev 73:1352–1365CrossRef Aditya L, Mahlia T, Rismanchi B, Ng H, Hasan M, Metselaar H, Muraza O, Aditiya H (2017) A review on insulation materials for energy conservation in buildings. Renew Sustain Energy Rev 73:1352–1365CrossRef
4.
Zurück zum Zitat Hu R, Ma A, Wang Y (2018) Transient hot wire measures thermophysical properties of organic foam thermal insulation materials. Exp Thermal Fluid Sci 98:674–682CrossRef Hu R, Ma A, Wang Y (2018) Transient hot wire measures thermophysical properties of organic foam thermal insulation materials. Exp Thermal Fluid Sci 98:674–682CrossRef
5.
Zurück zum Zitat Rashad AM (2016) A synopsis about perlite as building material–A best practice guide for Civil Engineer. Constr Build Mater 121:338–353CrossRef Rashad AM (2016) A synopsis about perlite as building material–A best practice guide for Civil Engineer. Constr Build Mater 121:338–353CrossRef
6.
Zurück zum Zitat Rashad AM (2016) Vermiculite as a construction material–A short guide for Civil Engineer. Constr Build Mater 125:53–62CrossRef Rashad AM (2016) Vermiculite as a construction material–A short guide for Civil Engineer. Constr Build Mater 125:53–62CrossRef
7.
Zurück zum Zitat Rashad AM (2018) Lightweight expanded clay aggregate as a building material–An overview. Constr Build Mater 170:757–775CrossRef Rashad AM (2018) Lightweight expanded clay aggregate as a building material–An overview. Constr Build Mater 170:757–775CrossRef
8.
Zurück zum Zitat A.M. Rashad (2019) A short manual on natural pumice as a lightweight aggregate. Journal of Building Engineering. 100802. A.M. Rashad (2019) A short manual on natural pumice as a lightweight aggregate. Journal of Building Engineering. 100802.
9.
Zurück zum Zitat Wu XW, Li ZB, Shi CQ, Liang JF, Zhang JL (2018) High thermal resistant fireproof and waterproof aluminum dihydrogen phosphate-expanded perlite composite thermal insulation board. Environ Prog Sustainable Energy 37(4):1319–1326CrossRef Wu XW, Li ZB, Shi CQ, Liang JF, Zhang JL (2018) High thermal resistant fireproof and waterproof aluminum dihydrogen phosphate-expanded perlite composite thermal insulation board. Environ Prog Sustainable Energy 37(4):1319–1326CrossRef
10.
Zurück zum Zitat Abriyantoro D, Dong J, Hicks C, Singh SP (2019) A stochastic optimisation model for biomass outsourcing in the cement manufacturing industry with production planning constraints. Energy 169:515–526CrossRef Abriyantoro D, Dong J, Hicks C, Singh SP (2019) A stochastic optimisation model for biomass outsourcing in the cement manufacturing industry with production planning constraints. Energy 169:515–526CrossRef
11.
Zurück zum Zitat Teh SH, Wiedmann T, Castel A, de Burgh J (2017) Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. J Clean Prod 152:312–320CrossRef Teh SH, Wiedmann T, Castel A, de Burgh J (2017) Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. J Clean Prod 152:312–320CrossRef
12.
Zurück zum Zitat Ipcc I (2005) Special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge Ipcc I (2005) Special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge
13.
Zurück zum Zitat Wang D, Noguchi T, Nozaki T (2019) Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials. J Clean Prod 238:117980CrossRef Wang D, Noguchi T, Nozaki T (2019) Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials. J Clean Prod 238:117980CrossRef
14.
Zurück zum Zitat Rashad AM (2015) A brief on high-volume Class F fly ash as cement replacement–A guide for Civil Engineer. Int J Sustain Built Environ 4(2):278–306CrossRef Rashad AM (2015) A brief on high-volume Class F fly ash as cement replacement–A guide for Civil Engineer. Int J Sustain Built Environ 4(2):278–306CrossRef
15.
Zurück zum Zitat Rashad AM, Ouda AS, Sadek DM (2018) Behavior of alkali-activated metakaolin pastes blended with quartz powder exposed to seawater attack. J Mater Civ Eng 30(8):04018159CrossRef Rashad AM, Ouda AS, Sadek DM (2018) Behavior of alkali-activated metakaolin pastes blended with quartz powder exposed to seawater attack. J Mater Civ Eng 30(8):04018159CrossRef
16.
Zurück zum Zitat Lee H-S, Lim S-M, Wang X-Y (2019) Optimal Mixture Design of Low-CO 2 High-Volume Slag Concrete Considering Climate Change and CO 2 Uptake. International Journal of Concrete Structures and Materials 13(1):56CrossRef Lee H-S, Lim S-M, Wang X-Y (2019) Optimal Mixture Design of Low-CO 2 High-Volume Slag Concrete Considering Climate Change and CO 2 Uptake. International Journal of Concrete Structures and Materials 13(1):56CrossRef
17.
Zurück zum Zitat Rashad AM (2013) A comprehensive overview about the influence of different additives on the properties of alkali-activated slag–A guide for Civil Engineer. Constr Build Mater 47:29–55CrossRef Rashad AM (2013) A comprehensive overview about the influence of different additives on the properties of alkali-activated slag–A guide for Civil Engineer. Constr Build Mater 47:29–55CrossRef
18.
Zurück zum Zitat Rashad AM (2014) A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater Des 53:1005–1025CrossRef Rashad AM (2014) A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater Des 53:1005–1025CrossRef
19.
Zurück zum Zitat Rashad AM (2013) Alkali-activated metakaolin: A short guide for civil Engineer–An overview. Constr Build Mater 41:751–765CrossRef Rashad AM (2013) Alkali-activated metakaolin: A short guide for civil Engineer–An overview. Constr Build Mater 41:751–765CrossRef
20.
Zurück zum Zitat R.A.M. Alyousef, H.A.M. Alabduljabbar, M. El-Zeadani (2020) Clean production and properties of geopolymer concrete; A review. R.A.M. Alyousef, H.A.M. Alabduljabbar, M. El-Zeadani (2020) Clean production and properties of geopolymer concrete; A review.
21.
Zurück zum Zitat J.L. Provis, J.S. Van Deventer (2013) Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer Science & Business Media. J.L. Provis, J.S. Van Deventer (2013) Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer Science & Business Media.
22.
Zurück zum Zitat Balcikanli M, Ozbay E (2016) Optimum design of alkali activated slag concretes for the low oxygen/chloride ion permeability and thermal conductivity. Compos B Eng 91:243–256CrossRef Balcikanli M, Ozbay E (2016) Optimum design of alkali activated slag concretes for the low oxygen/chloride ion permeability and thermal conductivity. Compos B Eng 91:243–256CrossRef
23.
Zurück zum Zitat Şahin M, Erdoğan ST, Bayer Ö (2018) Production of lightweight aerated alkali-activated slag pastes using hydrogen peroxide. Constr Build Mater 181:106–118CrossRef Şahin M, Erdoğan ST, Bayer Ö (2018) Production of lightweight aerated alkali-activated slag pastes using hydrogen peroxide. Constr Build Mater 181:106–118CrossRef
24.
Zurück zum Zitat Yang K-H, Lee K-H, Song J-K, Gong M-H (2014) Properties and sustainability of alkali-activated slag foamed concrete. J Clean Prod 68:226–233CrossRef Yang K-H, Lee K-H, Song J-K, Gong M-H (2014) Properties and sustainability of alkali-activated slag foamed concrete. J Clean Prod 68:226–233CrossRef
25.
Zurück zum Zitat Hajimohammadi A, Ngo T, Mendis P, Kashani A, van Deventer JS (2017) Alkali activated slag foams: the effect of the alkali reaction on foam characteristics. J Clean Prod 147:330–339CrossRef Hajimohammadi A, Ngo T, Mendis P, Kashani A, van Deventer JS (2017) Alkali activated slag foams: the effect of the alkali reaction on foam characteristics. J Clean Prod 147:330–339CrossRef
26.
Zurück zum Zitat Seo J, Bae S, Jang D, Park S, Yang B, Lee H-K (2020) Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement. Cement Concr Compos 106:103462CrossRef Seo J, Bae S, Jang D, Park S, Yang B, Lee H-K (2020) Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement. Cement Concr Compos 106:103462CrossRef
27.
Zurück zum Zitat He J, Gao Q, Song X, Bu X, He J (2019) Effect of foaming agent on physical and mechanical properties of alkali-activated slag foamed concrete. Constr Build Mater 226:280–287CrossRef He J, Gao Q, Song X, Bu X, He J (2019) Effect of foaming agent on physical and mechanical properties of alkali-activated slag foamed concrete. Constr Build Mater 226:280–287CrossRef
28.
Zurück zum Zitat Carabba L, Moricone R, Scarponi GE, Tugnoli A, Bignozzi MC (2019) Alkali activated lightweight mortars for passive fire protection: a preliminary study. Constr Build Mater 195:75–84CrossRef Carabba L, Moricone R, Scarponi GE, Tugnoli A, Bignozzi MC (2019) Alkali activated lightweight mortars for passive fire protection: a preliminary study. Constr Build Mater 195:75–84CrossRef
29.
Zurück zum Zitat Rashad AM (2019) Insulating and fire-resistant behaviour of metakaolin and fly ash geopolymer mortars. Proceedings of the Institution of Civil Engineers-Construction Materials 172(1):37–44CrossRef Rashad AM (2019) Insulating and fire-resistant behaviour of metakaolin and fly ash geopolymer mortars. Proceedings of the Institution of Civil Engineers-Construction Materials 172(1):37–44CrossRef
30.
Zurück zum Zitat Top S, Vapur H, Altiner M, Kaya D, Ekicibil A (2020) Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J Mol Struct 1202:127236CrossRef Top S, Vapur H, Altiner M, Kaya D, Ekicibil A (2020) Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J Mol Struct 1202:127236CrossRef
31.
Zurück zum Zitat Singh M, Garg M (1991) Perlite-based building materials—a review of current applications. Constr Build Mater 5(2):75–81CrossRef Singh M, Garg M (1991) Perlite-based building materials—a review of current applications. Constr Build Mater 5(2):75–81CrossRef
32.
Zurück zum Zitat Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energy and buildings 37(1):77–86CrossRef Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energy and buildings 37(1):77–86CrossRef
33.
Zurück zum Zitat Hodhod O, Rashad A, Abdel-Razek M, Ragab A (2009) Coating protection of loaded RC columns to resist elevated temperature. Fire Saf J 44(2):241–249CrossRef Hodhod O, Rashad A, Abdel-Razek M, Ragab A (2009) Coating protection of loaded RC columns to resist elevated temperature. Fire Saf J 44(2):241–249CrossRef
34.
Zurück zum Zitat Phavongkham V, Wattanasiriwech S, Cheng T-W, Wattanasiriwech D (2020) Effects of surfactant on thermo-mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent. Constr Build Mater 243:118282CrossRef Phavongkham V, Wattanasiriwech S, Cheng T-W, Wattanasiriwech D (2020) Effects of surfactant on thermo-mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent. Constr Build Mater 243:118282CrossRef
35.
Zurück zum Zitat Rashad AM (2013) Metakaolin as cementitious material: History, scours, production and composition–A comprehensive overview. Constr Build Mater 41:303–318CrossRef Rashad AM (2013) Metakaolin as cementitious material: History, scours, production and composition–A comprehensive overview. Constr Build Mater 41:303–318CrossRef
36.
Zurück zum Zitat Rashad AM (2015) Metakaolin: Fresh properties and optimum content for mechanical strength in traditional cementitious materials-A comprehensive overview. Rev Adv Mater Sci 40(1):15–44 Rashad AM (2015) Metakaolin: Fresh properties and optimum content for mechanical strength in traditional cementitious materials-A comprehensive overview. Rev Adv Mater Sci 40(1):15–44
37.
Zurück zum Zitat Morsy M, Rashad AM, Shoukry H, Mokhtar M (2019) Potential use of limestone in metakaolin-based geopolymer activated with H3PO4 for thermal insulation. Constr Build Mater 229:117088CrossRef Morsy M, Rashad AM, Shoukry H, Mokhtar M (2019) Potential use of limestone in metakaolin-based geopolymer activated with H3PO4 for thermal insulation. Constr Build Mater 229:117088CrossRef
38.
Zurück zum Zitat Boháčová J, Vavro M, Staněk S (2011) Properties of Thermal Insulating Alkali Activated System Research and Development, Transactions of the VŠB–Technical University of Ostrava. Civil Engineering Series 11(2):1–10 Boháčová J, Vavro M, Staněk S (2011) Properties of Thermal Insulating Alkali Activated System Research and Development, Transactions of the VŠB–Technical University of Ostrava. Civil Engineering Series 11(2):1–10
39.
Zurück zum Zitat Madadi A, Tasdighi M, Eskandari-Naddaf H (2019) Structural response of ferrocement panels incorporating lightweight expanded clay and perlite aggregates: Experimental, theoretical and statistical analysis. Eng Struct 188:382–393CrossRef Madadi A, Tasdighi M, Eskandari-Naddaf H (2019) Structural response of ferrocement panels incorporating lightweight expanded clay and perlite aggregates: Experimental, theoretical and statistical analysis. Eng Struct 188:382–393CrossRef
40.
Zurück zum Zitat D.S. Law Yim Wan, F. Aslani, G. Ma (2018) Lightweight self-compacting concrete incorporating Perlite, Scoria and Polystyrene aggregates. Journal of Materials in Civil Engineering. 30(8); 04018178. D.S. Law Yim Wan, F. Aslani, G. Ma (2018) Lightweight self-compacting concrete incorporating Perlite, Scoria and Polystyrene aggregates. Journal of Materials in Civil Engineering. 30(8); 04018178.
41.
Zurück zum Zitat Topçu İB, Işıkdağ B (2008) Effect of expanded perlite aggregate on the properties of lightweight concrete. J Mater Process Technol 204(1–3):34–38CrossRef Topçu İB, Işıkdağ B (2008) Effect of expanded perlite aggregate on the properties of lightweight concrete. J Mater Process Technol 204(1–3):34–38CrossRef
42.
Zurück zum Zitat Liu W, Apel D, Bindiganavile V (2014) Thermal properties of lightweight dry-mix shotcrete containing expanded perlite aggregate. Cement Concr Compos 53:44–51CrossRef Liu W, Apel D, Bindiganavile V (2014) Thermal properties of lightweight dry-mix shotcrete containing expanded perlite aggregate. Cement Concr Compos 53:44–51CrossRef
43.
Zurück zum Zitat Coppola L, Coffetti D, Crotti E, Marini A, Passoni C, Pastore T (2019) Lightweight cement-free alkali-activated slag plaster for the structural retrofit and energy upgrading of poor quality masonry walls. Cement Concr Compos 104:103341CrossRef Coppola L, Coffetti D, Crotti E, Marini A, Passoni C, Pastore T (2019) Lightweight cement-free alkali-activated slag plaster for the structural retrofit and energy upgrading of poor quality masonry walls. Cement Concr Compos 104:103341CrossRef
44.
Zurück zum Zitat Su Z, Guo L, Zhang Z, Duan P (2019) Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Constr Build Mater 203:525–540CrossRef Su Z, Guo L, Zhang Z, Duan P (2019) Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Constr Build Mater 203:525–540CrossRef
45.
Zurück zum Zitat Buchwald A, Hilbig H, Kaps C (2007) Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. J Mater Sci 42(9):3024–3032CrossRef Buchwald A, Hilbig H, Kaps C (2007) Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. J Mater Sci 42(9):3024–3032CrossRef
46.
Zurück zum Zitat Burciaga-Díaz O, Escalante-García JI (2017) Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cement Concr Compos 84:157–166CrossRef Burciaga-Díaz O, Escalante-García JI (2017) Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cement Concr Compos 84:157–166CrossRef
47.
Zurück zum Zitat Ding Y, Shi C-J, Li N (2018) Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Constr Build Mater 190:787–795CrossRef Ding Y, Shi C-J, Li N (2018) Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Constr Build Mater 190:787–795CrossRef
48.
Zurück zum Zitat Guerrieri M, Sanjayan JG (2010) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire and Materials: An International Journal 34(4):163–175 Guerrieri M, Sanjayan JG (2010) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire and Materials: An International Journal 34(4):163–175
49.
Zurück zum Zitat Samantasinghar S, Singh SP (2018) Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Constr Build Mater 170:225–234CrossRef Samantasinghar S, Singh SP (2018) Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Constr Build Mater 170:225–234CrossRef
50.
Zurück zum Zitat Yazdi MA, Liebscher M, Hempel S, Yang J, Mechtcherine V (2018) Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Constr Build Mater 191:330–341CrossRef Yazdi MA, Liebscher M, Hempel S, Yang J, Mechtcherine V (2018) Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Constr Build Mater 191:330–341CrossRef
51.
Zurück zum Zitat Ducman V, Korat L (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater Charact 113:207–213CrossRef Ducman V, Korat L (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater Charact 113:207–213CrossRef
52.
Zurück zum Zitat Xu F, Gu G, Zhang W, Wang H, Huang X, Zhu J (2018) Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceram Int 44(16):19989–19997CrossRef Xu F, Gu G, Zhang W, Wang H, Huang X, Zhu J (2018) Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceram Int 44(16):19989–19997CrossRef
53.
Zurück zum Zitat Petlitckaia S, Poulesquen A (2019) Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram Int 45(1):1322–1330CrossRef Petlitckaia S, Poulesquen A (2019) Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram Int 45(1):1322–1330CrossRef
54.
Zurück zum Zitat Rashad AM (2013) Properties of alkali-activated fly ash concrete blended with slag. Iran J Mater Sci Eng 10(1):57–64 Rashad AM (2013) Properties of alkali-activated fly ash concrete blended with slag. Iran J Mater Sci Eng 10(1):57–64
55.
Zurück zum Zitat Lee N, Lee H-K (2013) Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater 47:1201–1209CrossRef Lee N, Lee H-K (2013) Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater 47:1201–1209CrossRef
56.
Zurück zum Zitat Hlaváček P, Šmilauer V, Škvára F, Kopecký L, Šulc R (2015) Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. J Eur Ceram Soc 35(2):703–709CrossRef Hlaváček P, Šmilauer V, Škvára F, Kopecký L, Šulc R (2015) Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. J Eur Ceram Soc 35(2):703–709CrossRef
57.
Zurück zum Zitat Rickard WD, Vickers L, Van Riessen A (2013) Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions. Appl Clay Sci 73:71–77CrossRef Rickard WD, Vickers L, Van Riessen A (2013) Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions. Appl Clay Sci 73:71–77CrossRef
58.
Zurück zum Zitat Bai C, Ni T, Wang Q, Li H, Colombo P (2018) Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent. J Eur Ceram Soc 38(2):799–805CrossRef Bai C, Ni T, Wang Q, Li H, Colombo P (2018) Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent. J Eur Ceram Soc 38(2):799–805CrossRef
59.
Zurück zum Zitat Goure-Doubi H, Lecomte-Nana G, Nait-Abbou F, Nait-Ali B, Smith A, Coudert V, Konan L (2014) Understanding the strengthening of a lateritic “geomimetic” material. Constr Build Mater 55:333–340CrossRef Goure-Doubi H, Lecomte-Nana G, Nait-Abbou F, Nait-Ali B, Smith A, Coudert V, Konan L (2014) Understanding the strengthening of a lateritic “geomimetic” material. Constr Build Mater 55:333–340CrossRef
60.
Zurück zum Zitat Carabba L, Pirskawetz S, Krüger S, Gluth GJ, Bignozzi MC (2019) Acoustic emission study of heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars. Cement Concr Compos 102:145–156CrossRef Carabba L, Pirskawetz S, Krüger S, Gluth GJ, Bignozzi MC (2019) Acoustic emission study of heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars. Cement Concr Compos 102:145–156CrossRef
61.
Zurück zum Zitat Novais RM, Buruberri L, Ascensão G, Seabra M, Labrincha J (2016) Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J Clean Prod 119:99–107CrossRef Novais RM, Buruberri L, Ascensão G, Seabra M, Labrincha J (2016) Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J Clean Prod 119:99–107CrossRef
62.
Zurück zum Zitat Türkmen İ, Kantarcı A (2007) Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete. Build Environ 42(6):2378–2383CrossRef Türkmen İ, Kantarcı A (2007) Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete. Build Environ 42(6):2378–2383CrossRef
63.
Zurück zum Zitat Erdoğan ST, Sağlık AÜ (2013) Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cement Concr Compos 38:29–39CrossRef Erdoğan ST, Sağlık AÜ (2013) Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cement Concr Compos 38:29–39CrossRef
64.
Zurück zum Zitat Lanzón M, García-Ruiz P (2008) Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr Build Mater 22(8):1798–1806CrossRef Lanzón M, García-Ruiz P (2008) Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr Build Mater 22(8):1798–1806CrossRef
65.
Zurück zum Zitat Sengul O, Azizi S, Karaosmanoglu F, Tasdemir MA (2011) Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings 43(2–3):671–676CrossRef Sengul O, Azizi S, Karaosmanoglu F, Tasdemir MA (2011) Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings 43(2–3):671–676CrossRef
66.
Zurück zum Zitat Shuai Q, Xu Z, Yao Z, Chen X, Jiang Z, Peng X, An R, Li Y, Jiang X, Li H (2020) Fire resistance of phosphoric acid-based geopolymer foams fabricated from metakaolin and hydrogen peroxide. Mater Lett 263:127228CrossRef Shuai Q, Xu Z, Yao Z, Chen X, Jiang Z, Peng X, An R, Li Y, Jiang X, Li H (2020) Fire resistance of phosphoric acid-based geopolymer foams fabricated from metakaolin and hydrogen peroxide. Mater Lett 263:127228CrossRef
67.
Zurück zum Zitat Zuda L, Rovnaník P, Bayer P, Černý R (2011) Thermal properties of alkali-activated aluminosilicate composite with lightweight aggregates at elevated temperatures. Fire Mater 35(4):231–244CrossRef Zuda L, Rovnaník P, Bayer P, Černý R (2011) Thermal properties of alkali-activated aluminosilicate composite with lightweight aggregates at elevated temperatures. Fire Mater 35(4):231–244CrossRef
68.
Zurück zum Zitat Wang Z, Su H, Zhao S, Zhao N (2016) Influence of phase change material on mechanical and thermal properties of clay geopolymer mortar. Constr Build Mater 120:329–334CrossRef Wang Z, Su H, Zhao S, Zhao N (2016) Influence of phase change material on mechanical and thermal properties of clay geopolymer mortar. Constr Build Mater 120:329–334CrossRef
69.
Zurück zum Zitat Medri V, Papa E, Mazzocchi M, Laghi L, Morganti M, Francisconi J, Landi E (2015) Production and characterization of lightweight vermiculite/geopolymer-based panels. Mater Des 85:266–274CrossRef Medri V, Papa E, Mazzocchi M, Laghi L, Morganti M, Francisconi J, Landi E (2015) Production and characterization of lightweight vermiculite/geopolymer-based panels. Mater Des 85:266–274CrossRef
70.
Zurück zum Zitat Gao X, Yu Q (2019) Effects of an eco-silica source based activator on functional alkali activated lightweight composites. Constr Build Mater 215:686–695CrossRef Gao X, Yu Q (2019) Effects of an eco-silica source based activator on functional alkali activated lightweight composites. Constr Build Mater 215:686–695CrossRef
71.
Zurück zum Zitat Wang J, Lyu X, Wang L, Cao X, Zang H, Liu Q (2017) Effect of Anhydrite on the Hydration of Calcium Oxide-Activated Ground Granulated Blast Furnace Slag Binders. Sci Adv Mater 9(12):2214–2222CrossRef Wang J, Lyu X, Wang L, Cao X, Zang H, Liu Q (2017) Effect of Anhydrite on the Hydration of Calcium Oxide-Activated Ground Granulated Blast Furnace Slag Binders. Sci Adv Mater 9(12):2214–2222CrossRef
72.
Zurück zum Zitat Rashad AM, Sadek DM, Hassan HA (2016) An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J Clean Prod 112:1086–1096CrossRef Rashad AM, Sadek DM, Hassan HA (2016) An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J Clean Prod 112:1086–1096CrossRef
73.
Zurück zum Zitat Ashrae A (1997) Handbook of Fundamentals, American Society of Heating. Refrigerating and Air Conditioning Engineers Inc., Atlanta, GA Ashrae A (1997) Handbook of Fundamentals, American Society of Heating. Refrigerating and Air Conditioning Engineers Inc., Atlanta, GA
74.
Zurück zum Zitat The Housing and Building Research Council (2005) Residential Energy Efficiency Building Code, ECP 306. Dar Akhbar El Yom, Cairo The Housing and Building Research Council (2005) Residential Energy Efficiency Building Code, ECP 306. Dar Akhbar El Yom, Cairo
Metadaten
Titel
Insulation efficiency of alkali-activated lightweight mortars containing different ratios of binder/expanded perlite fine aggregate
verfasst von
Alaa M. Rashad
Mervat H. Khalil
M. H. El-Nashar
Publikationsdatum
01.09.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 3/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-021-00524-x

Weitere Artikel der Ausgabe 3/2021

Innovative Infrastructure Solutions 3/2021 Zur Ausgabe