Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 3-4/2020

11.12.2019 | ORIGINAL ARTICLE

Integral fabrication of terahertz hollow-core metal rectangular waveguides with a combined process using wire electrochemical micromachining, electrochemical deposition, and selective chemical dissolution

verfasst von: Xiaolei Bi, Yongbin Zeng, Xingda Dai, Ningsong Qu

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 3-4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The application requirements of terahertz hollow-core metal rectangular waveguides with a high-working frequency have become increasingly urgent with the rapid development of terahertz technology. Integral fabrication of terahertz hollow-core metal rectangular waveguides can improve considerably the transmission performance of terahertz signals. However, with current manufacturing techniques, the high-precision integral fabrication of high-working-frequency terahertz hollow-core metal rectangular waveguides is difficult owing to their characteristically small end face size and the need for strict dimensional accuracy and high internal surface quality. In this paper, an innovative combined process of wire electrochemical micromachining, electrochemical deposition, and selective chemical dissolution is proposed firstly to overcome this puzzle. Taking the fabrication of an integral 1-THz hollow-core metal rectangular waveguide as an example, the manufacturing methods involved in each step are described particularly, together with the corresponding experimental investigations. With the end face size of 127 μm × 254 μm, edge radius less than 5 μm, and internal surface roughness less than 0.08 μm, the experimental results satisfy the design requirements for a 1-THz hollow-core metal rectangular waveguide. This study demonstrates that the proposed combined process is flexible, controllable, and suitable for the high-precision integral fabrication of high-working-frequency terahertz hollow-core metal rectangular waveguides.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang K, Sun DW, Pu H (2017) Emerging non-destructive terahertz spectroscopic imaging technique: principle and applications in the agri-food industry. Trends Food Sci Technol 67:93–105CrossRef Wang K, Sun DW, Pu H (2017) Emerging non-destructive terahertz spectroscopic imaging technique: principle and applications in the agri-food industry. Trends Food Sci Technol 67:93–105CrossRef
2.
Zurück zum Zitat Redo-Sanchez A, Zhang XC (2008) Terahertz science and technology trends. IEEE J Sel Top Quantum Electron 14:260–269CrossRef Redo-Sanchez A, Zhang XC (2008) Terahertz science and technology trends. IEEE J Sel Top Quantum Electron 14:260–269CrossRef
3.
Zurück zum Zitat Hangyo M (2015) Development and future prospects of terahertz technology. Jpn J Appl Phys 54:120101CrossRef Hangyo M (2015) Development and future prospects of terahertz technology. Jpn J Appl Phys 54:120101CrossRef
4.
Zurück zum Zitat Gerhard M, Beigang R, Rahm M (2015) Comparative terahertz study of rectangular metal waveguides with and without a ridge. J Infrared Millim Terahertz Waves 36:327–334CrossRef Gerhard M, Beigang R, Rahm M (2015) Comparative terahertz study of rectangular metal waveguides with and without a ridge. J Infrared Millim Terahertz Waves 36:327–334CrossRef
5.
Zurück zum Zitat Wang C, Lu B, Jie L, Deng X (2012) 140GHz waveguide H ladder bandpass filter. IEEE International Conf, Microwave and Millimeter Wave, Shenzhen, China Wang C, Lu B, Jie L, Deng X (2012) 140GHz waveguide H ladder bandpass filter. IEEE International Conf, Microwave and Millimeter Wave, Shenzhen, China
6.
Zurück zum Zitat Gamzina D, Himes LG, Barchfeld R, Zheng Y, Popovic BK, Paoloni C, Choi E, Luhmann NC (2016) Nano-CNC machining of sub-THz vacuum electron devices. IEEE Trans Electron Devices 63:4067–4073CrossRef Gamzina D, Himes LG, Barchfeld R, Zheng Y, Popovic BK, Paoloni C, Choi E, Luhmann NC (2016) Nano-CNC machining of sub-THz vacuum electron devices. IEEE Trans Electron Devices 63:4067–4073CrossRef
7.
Zurück zum Zitat Collins CE, Miles RE, Digby JW, Parkhurst GM, Pollard RD, Chamberlain JM, Steenson DP, Cronin NJ, Davies SR, Bowen JW (2002) A new micro-machined millimeter-wave and terahertz snap-together rectangular waveguide technology. IEEE Microw Guid Wave Lett 9:63–65CrossRef Collins CE, Miles RE, Digby JW, Parkhurst GM, Pollard RD, Chamberlain JM, Steenson DP, Cronin NJ, Davies SR, Bowen JW (2002) A new micro-machined millimeter-wave and terahertz snap-together rectangular waveguide technology. IEEE Microw Guid Wave Lett 9:63–65CrossRef
8.
Zurück zum Zitat Hu J, Xie S, Zhang Y (2012) Micromachined terahertz rectangular waveguide bandpass filter on silicon-substrate. IEEE Microw Wirel Components Lett 22:636–638CrossRef Hu J, Xie S, Zhang Y (2012) Micromachined terahertz rectangular waveguide bandpass filter on silicon-substrate. IEEE Microw Wirel Components Lett 22:636–638CrossRef
9.
Zurück zum Zitat Rowen A, Hollowell AE, Wanke M, Nordquist CD, Arrington C, Gillen R, Coleman JJ (2010) Multilayer metal micro machining for THz waveguide fabrication. Proc SPIE 7590:759009–759012CrossRef Rowen A, Hollowell AE, Wanke M, Nordquist CD, Arrington C, Gillen R, Coleman JJ (2010) Multilayer metal micro machining for THz waveguide fabrication. Proc SPIE 7590:759009–759012CrossRef
10.
Zurück zum Zitat Otter WJ, Ridler NM, Yasukochi H, Soeda K, Konishi K, Yumoto J, Kuwata-Gonokami M, Lucyszyn S (2017) 3D printed 1.1 THz waveguides. Electron Lett 53:471–473CrossRef Otter WJ, Ridler NM, Yasukochi H, Soeda K, Konishi K, Yumoto J, Kuwata-Gonokami M, Lucyszyn S (2017) 3D printed 1.1 THz waveguides. Electron Lett 53:471–473CrossRef
11.
Zurück zum Zitat Gao C, Qu N (2019) Wire electrochemical micromachining of high-aspect ratio microstructures on stainless steel 304 with 270-μm thickness. Int J Adv Manuf Technol 100:263–272CrossRef Gao C, Qu N (2019) Wire electrochemical micromachining of high-aspect ratio microstructures on stainless steel 304 with 270-μm thickness. Int J Adv Manuf Technol 100:263–272CrossRef
12.
Zurück zum Zitat Jiang K, Wu X, Lei J, Wu Z, Wu W, Li W, Diao D (2018) Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte. Int J Adv Manuf Technol 97:3565–3574CrossRef Jiang K, Wu X, Lei J, Wu Z, Wu W, Li W, Diao D (2018) Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte. Int J Adv Manuf Technol 97:3565–3574CrossRef
13.
Zurück zum Zitat Tyagi A, Sharma V, Jain VK, Ramkumar J (2018) Investigations into side gap in wire electrochemical micromachining (wire-ECMM). Int J Adv Manuf Technol 94:4469–4478CrossRef Tyagi A, Sharma V, Jain VK, Ramkumar J (2018) Investigations into side gap in wire electrochemical micromachining (wire-ECMM). Int J Adv Manuf Technol 94:4469–4478CrossRef
14.
Zurück zum Zitat Xu K, Zeng Y, Li P, Zhu D (2015) Study of surface roughness in wire electrochemical micro machining. J Mater Process Technol 222:103–109CrossRef Xu K, Zeng Y, Li P, Zhu D (2015) Study of surface roughness in wire electrochemical micro machining. J Mater Process Technol 222:103–109CrossRef
15.
Zurück zum Zitat He HD, Qu NS, Zeng YB, Yao YY (2017) Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures. Int J Adv Manuf Technol 89:3177–3186CrossRef He HD, Qu NS, Zeng YB, Yao YY (2017) Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures. Int J Adv Manuf Technol 89:3177–3186CrossRef
16.
Zurück zum Zitat Shao L, Du L, Liu C, Wang L (2014) Microstructure and mechanical properties of nanocrystalline nickel prepared by pulse reverse microelectroforming. J Exp Nanosci 9:299–309CrossRef Shao L, Du L, Liu C, Wang L (2014) Microstructure and mechanical properties of nanocrystalline nickel prepared by pulse reverse microelectroforming. J Exp Nanosci 9:299–309CrossRef
17.
Zurück zum Zitat Ren X, Song Y, Liu A, Zhang J, Yang P, Zhang J, An M (2015) Experimental and theoretical studies of DMH as a complexing agent for a cyanide-free gold electroplating electrolyte. RSC Adv 5:64997–65004CrossRef Ren X, Song Y, Liu A, Zhang J, Yang P, Zhang J, An M (2015) Experimental and theoretical studies of DMH as a complexing agent for a cyanide-free gold electroplating electrolyte. RSC Adv 5:64997–65004CrossRef
18.
Zurück zum Zitat Bledt CM, Melzer JE, Harrington JA (2013) Theoretical and experimental investigation of infrared properties of tapered silver/silver halide-coated hollow waveguides. Appl Opt 52:3703–3712CrossRef Bledt CM, Melzer JE, Harrington JA (2013) Theoretical and experimental investigation of infrared properties of tapered silver/silver halide-coated hollow waveguides. Appl Opt 52:3703–3712CrossRef
19.
Zurück zum Zitat Shen C, Zhu Z, Di Z, Ren J (2017) Copper deposits with high tensile strength and elongation electroformed in an ultra-low-concentration sulfate bath without additives. J Mater Eng Perform 26:987–992CrossRef Shen C, Zhu Z, Di Z, Ren J (2017) Copper deposits with high tensile strength and elongation electroformed in an ultra-low-concentration sulfate bath without additives. J Mater Eng Perform 26:987–992CrossRef
Metadaten
Titel
Integral fabrication of terahertz hollow-core metal rectangular waveguides with a combined process using wire electrochemical micromachining, electrochemical deposition, and selective chemical dissolution
verfasst von
Xiaolei Bi
Yongbin Zeng
Xingda Dai
Ningsong Qu
Publikationsdatum
11.12.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 3-4/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04680-4

Weitere Artikel der Ausgabe 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.