Skip to main content

2013 | OriginalPaper | Buchkapitel

Integration of Molecular Signaling into Multiscale Modeling of Cancer

verfasst von : Zhihui Wang, Vittorio Cristini

Erschienen in: Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multiscale modeling has now been well-accepted as a powerful tool to quantitatively represent, simulate, understand, and predict cancer progression and development across multiple biological scales. In this chapter, we focus on a specific type of multiscale cancer models where molecular signaling profiles are explicitly linked to the determination of cellular phenotypic changes. These models are particularly suitable for exploring the relationship between signaling dynamics within each individual cancer cell and the emergent cancer behavior on the multicellular level. We also discuss current challenges and future directions of this molecular signaling-incorporated multiscale cancer modeling approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Hajj, M., Clarke, M.F.: Self-renewal and solid tumor stem cells. Oncogene 23(43), 7274–7282 (2004)CrossRef Al-Hajj, M., Clarke, M.F.: Self-renewal and solid tumor stem cells. Oncogene 23(43), 7274–7282 (2004)CrossRef
2.
Zurück zum Zitat Balmain, A., Gray, J., Ponder, B.: The genetics and genomics of cancer. Nat. Genet. 33(Suppl), 238–244 (2003)CrossRef Balmain, A., Gray, J., Ponder, B.: The genetics and genomics of cancer. Nat. Genet. 33(Suppl), 238–244 (2003)CrossRef
3.
Zurück zum Zitat Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)CrossRef Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)CrossRef
4.
Zurück zum Zitat Deisboeck, T.S., Zhang, L., Yoon, J., Costa, J.: In silico cancer modeling: is it ready for prime time? Nat. Clin. Pract. 6(1), 34–42 (2009)CrossRef Deisboeck, T.S., Zhang, L., Yoon, J., Costa, J.: In silico cancer modeling: is it ready for prime time? Nat. Clin. Pract. 6(1), 34–42 (2009)CrossRef
5.
Zurück zum Zitat Schnell, S., Grima, R., Maini, P.K.: Multiscale modeling in biology—new insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest. Am. Sci. 95(2), 134–142 (2007) Schnell, S., Grima, R., Maini, P.K.: Multiscale modeling in biology—new insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest. Am. Sci. 95(2), 134–142 (2007)
6.
Zurück zum Zitat Anderson, A.R., Quaranta, V.: Integrative mathematical oncology. Nat. Rev. Cancer 8(3), 227–234 (2008). doi:10.1038/nrc2329, nrc2329 [pii] Anderson, A.R., Quaranta, V.: Integrative mathematical oncology. Nat. Rev. Cancer 8(3), 227–234 (2008). doi:10.1038/nrc2329, nrc2329 [pii]
7.
Zurück zum Zitat Tracqui, P.: Biophysical models of tumour growth. Rep. Prog. Phys. 72(5) (2009). doi:056701 10.1088/0034-4885/72/5/056701 Tracqui, P.: Biophysical models of tumour growth. Rep. Prog. Phys. 72(5) (2009). doi:056701 10.1088/0034-4885/72/5/056701
8.
Zurück zum Zitat Cristini, V., Lowengrub, J.S.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)CrossRef Cristini, V., Lowengrub, J.S.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)CrossRef
10.
Zurück zum Zitat Schaller, G., Meyer-Hermann, M.: Continuum versus discrete model: a comparison for multicellular tumour spheroids. Philos. Trans. 364(1843), 1443–1464 (2006)MathSciNetCrossRef Schaller, G., Meyer-Hermann, M.: Continuum versus discrete model: a comparison for multicellular tumour spheroids. Philos. Trans. 364(1843), 1443–1464 (2006)MathSciNetCrossRef
11.
Zurück zum Zitat Gatenby, R.A., Silva, A.S., Gillies, R.J., Frieden, B.R.: Adaptive therapy. Cancer Res. 69(11), 4894–4903 (2009)CrossRef Gatenby, R.A., Silva, A.S., Gillies, R.J., Frieden, B.R.: Adaptive therapy. Cancer Res. 69(11), 4894–4903 (2009)CrossRef
12.
Zurück zum Zitat Wang, Z., Deisboeck, T.S.: Computational modeling of brain tumors: discrete, continuum or hybrid? Sci. Model. Simul. 15, 381–393 (2008)CrossRef Wang, Z., Deisboeck, T.S.: Computational modeling of brain tumors: discrete, continuum or hybrid? Sci. Model. Simul. 15, 381–393 (2008)CrossRef
13.
Zurück zum Zitat Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. USA. 99(Suppl 3), 7280–7287 (2002)CrossRef Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. USA. 99(Suppl 3), 7280–7287 (2002)CrossRef
14.
Zurück zum Zitat Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Br. Bioinform. 8(4), 245–257 (2007). 10.1093/bib/bbm024, bbm024[pii]CrossRef Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Br. Bioinform. 8(4), 245–257 (2007). 10.1093/bib/bbm024, bbm024[pii]CrossRef
15.
Zurück zum Zitat Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life 12(4), 617–634 (2006)CrossRef Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life 12(4), 617–634 (2006)CrossRef
16.
Zurück zum Zitat Spencer, S.L., Gerety, R.A., Pienta, K.J., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Comput. Biol. 2(8), e108 (2006)CrossRef Spencer, S.L., Gerety, R.A., Pienta, K.J., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Comput. Biol. 2(8), e108 (2006)CrossRef
17.
Zurück zum Zitat Pepper, J.W., Sprouffske, K., Maley, C.C.: Animal cell differentiation patterns suppress somatic evolution. PLoS Comput. Biol. 3(12), e250 (2007)CrossRef Pepper, J.W., Sprouffske, K., Maley, C.C.: Animal cell differentiation patterns suppress somatic evolution. PLoS Comput. Biol. 3(12), e250 (2007)CrossRef
18.
Zurück zum Zitat Schaller, G., Meyer-Hermann, M.: Multicellular tumor spheroid in an off-lattice voronoi-delaunay cell model. Phys. Rev. 71(5 Pt 1), 051910 (2005)MathSciNet Schaller, G., Meyer-Hermann, M.: Multicellular tumor spheroid in an off-lattice voronoi-delaunay cell model. Phys. Rev. 71(5 Pt 1), 051910 (2005)MathSciNet
19.
Zurück zum Zitat Pearce, I.G., Chaplain, M.A., Schofield, P.G., Anderson, A.R., Hubbard, S.F.: Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J. Math. Biol. 55(3), 365–388 (2007)MathSciNetMATHCrossRef Pearce, I.G., Chaplain, M.A., Schofield, P.G., Anderson, A.R., Hubbard, S.F.: Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J. Math. Biol. 55(3), 365–388 (2007)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Ramis-Conde, I., Chaplain, M.A., Anderson, A.R.: Mathematical modelling of cancer cell invasion of tissue. Math. Comp. Model. 47, 533–545 (2006)MathSciNetCrossRef Ramis-Conde, I., Chaplain, M.A., Anderson, A.R.: Mathematical modelling of cancer cell invasion of tissue. Math. Comp. Model. 47, 533–545 (2006)MathSciNetCrossRef
21.
Zurück zum Zitat Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. STKE. 2006(344), re6 (2006) Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. STKE. 2006(344), re6 (2006)
22.
Zurück zum Zitat Postovit, L.M., Seftor, E.A., Seftor, R.E., Hendrix, M.J.: Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res. 66(16), 7833–7836 (2006)CrossRef Postovit, L.M., Seftor, E.A., Seftor, R.E., Hendrix, M.J.: Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res. 66(16), 7833–7836 (2006)CrossRef
23.
Zurück zum Zitat Hendrix, M.J., Seftor, E.A., Seftor, R.E., Kasemeier-Kulesa, J., Kulesa, P.M., Postovit, L.M.: Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer 7(4), 246–255 (2007). 10.1038/nrc2108, nrc2108 [pii]CrossRef Hendrix, M.J., Seftor, E.A., Seftor, R.E., Kasemeier-Kulesa, J., Kulesa, P.M., Postovit, L.M.: Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer 7(4), 246–255 (2007). 10.1038/nrc2108, nrc2108 [pii]CrossRef
24.
Zurück zum Zitat Zhang, L., Wang, Z., Sagotsky, J.A., Deisboeck, T.S.: Multiscale agent-based cancer modeling. J. Math. Biol. 58(4–5), 545–559 (2009)MathSciNetCrossRef Zhang, L., Wang, Z., Sagotsky, J.A., Deisboeck, T.S.: Multiscale agent-based cancer modeling. J. Math. Biol. 58(4–5), 545–559 (2009)MathSciNetCrossRef
25.
Zurück zum Zitat Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1(2005), 0010 (2005) Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1(2005), 0010 (2005)
26.
Zurück zum Zitat Friedl, P., Wolf, K.: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3(5), 362–374 (2003)CrossRef Friedl, P., Wolf, K.: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3(5), 362–374 (2003)CrossRef
27.
Zurück zum Zitat Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J.H., Saito, K., Saeki, M., Shirouzu, M., Yokoyama, S., Konagaya, A.: A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 373(Pt 2), 451–463 (2003)CrossRef Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J.H., Saito, K., Saeki, M., Shirouzu, M., Yokoyama, S., Konagaya, A.: A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 373(Pt 2), 451–463 (2003)CrossRef
28.
Zurück zum Zitat Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274(42), 30169–30181 (1999)CrossRef Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274(42), 30169–30181 (1999)CrossRef
29.
Zurück zum Zitat Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20(4), 370–375 (2002)CrossRef Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20(4), 370–375 (2002)CrossRef
30.
Zurück zum Zitat Mouneimne, G., Soon, L., DesMarais, V., Sidani, M., Song, X., Yip, S.C., Ghosh, M., Eddy, R., Backer, J.M., Condeelis, J.: Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166(5), 697–708 (2004)CrossRef Mouneimne, G., Soon, L., DesMarais, V., Sidani, M., Song, X., Yip, S.C., Ghosh, M., Eddy, R., Backer, J.M., Condeelis, J.: Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166(5), 697–708 (2004)CrossRef
31.
Zurück zum Zitat Dittmar, T., Husemann, A., Schewe, Y., Nofer, J.R., Niggemann, B., Zanker, K.S., Brandt, B.H.: Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. Faseb. J. 16(13), 1823–1825 (2002) Dittmar, T., Husemann, A., Schewe, Y., Nofer, J.R., Niggemann, B., Zanker, K.S., Brandt, B.H.: Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. Faseb. J. 16(13), 1823–1825 (2002)
32.
Zurück zum Zitat Santos, S.D., Verveer, P.J., Bastiaens, P.I.: Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9(3), 324–330 (2007)CrossRef Santos, S.D., Verveer, P.J., Bastiaens, P.I.: Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9(3), 324–330 (2007)CrossRef
33.
Zurück zum Zitat Athale, C., Mansury, Y., Deisboeck, T.S.: Simulating the impact of a molecular decision-process on cellular phenotype and multicellular patterns in brain tumors. J. Theor. Biol. 233(4), 469–481 (2005)CrossRef Athale, C., Mansury, Y., Deisboeck, T.S.: Simulating the impact of a molecular decision-process on cellular phenotype and multicellular patterns in brain tumors. J. Theor. Biol. 233(4), 469–481 (2005)CrossRef
34.
Zurück zum Zitat Athale, C.A., Deisboeck, T.S.: The effects of EGF-receptor density on multiscale tumor growth patterns. J. Theor. Biol. 238(4), 771–779 (2006)MathSciNetCrossRef Athale, C.A., Deisboeck, T.S.: The effects of EGF-receptor density on multiscale tumor growth patterns. J. Theor. Biol. 238(4), 771–779 (2006)MathSciNetCrossRef
35.
Zurück zum Zitat Lund-Johansen, M., Bjerkvig, R., Humphrey, P.A., Bigner, S.H., Bigner, D.D., Laerum, O.D.: Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res. 50(18), 6039–6044 (1990) Lund-Johansen, M., Bjerkvig, R., Humphrey, P.A., Bigner, S.H., Bigner, D.D., Laerum, O.D.: Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res. 50(18), 6039–6044 (1990)
36.
Zurück zum Zitat Zhang, L., Athale, C.A., Deisboeck, T.S.: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244(1), 96–107 (2007)MathSciNetCrossRef Zhang, L., Athale, C.A., Deisboeck, T.S.: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244(1), 96–107 (2007)MathSciNetCrossRef
37.
Zurück zum Zitat Alarcon, T., Byrne, H.M., Maini, P.K.: A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol. 229(3), 395–411 (2004)MathSciNetCrossRef Alarcon, T., Byrne, H.M., Maini, P.K.: A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol. 229(3), 395–411 (2004)MathSciNetCrossRef
38.
Zurück zum Zitat Zhang, L., Strouthos, C.G., Wang, Z., Deisboeck, T.S.: Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math. Comput. Model. 49(1–2), 307–319 (2009)MathSciNetMATHCrossRef Zhang, L., Strouthos, C.G., Wang, Z., Deisboeck, T.S.: Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math. Comput. Model. 49(1–2), 307–319 (2009)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Steinbach, J.P., Klumpp, A., Wolburg, H., Weller, M.: Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. Cancer Res. 64(5), 1575–1578 (2004)CrossRef Steinbach, J.P., Klumpp, A., Wolburg, H., Weller, M.: Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. Cancer Res. 64(5), 1575–1578 (2004)CrossRef
40.
Zurück zum Zitat Wang, Z., Zhang, L., Sagotsky, J., Deisboeck, T.S.: Simulating non-small cell lung cancer with a multiscale agent-based model. Theor. Biol. Med. Model. 4(1), 50 (2007)CrossRef Wang, Z., Zhang, L., Sagotsky, J., Deisboeck, T.S.: Simulating non-small cell lung cancer with a multiscale agent-based model. Theor. Biol. Med. Model. 4(1), 50 (2007)CrossRef
41.
Zurück zum Zitat Price, J.T., Wilson, H.M., Haites, N.E.: Epidermal growth factor (EGF) increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur. J. Cancer 32A(11), 1977–1982 (1996)CrossRef Price, J.T., Wilson, H.M., Haites, N.E.: Epidermal growth factor (EGF) increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur. J. Cancer 32A(11), 1977–1982 (1996)CrossRef
42.
Zurück zum Zitat Xue, C., Wyckoff, J., Liang, F., Sidani, M., Violini, S., Tsai, K.L., Zhang, Z.Y., Sahai, E., Condeelis, J., Segall, J.E.: Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res. 66(1), 192–197 (2006)CrossRef Xue, C., Wyckoff, J., Liang, F., Sidani, M., Violini, S., Tsai, K.L., Zhang, Z.Y., Sahai, E., Condeelis, J., Segall, J.E.: Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res. 66(1), 192–197 (2006)CrossRef
43.
Zurück zum Zitat Wang, Z., Birch, C.M., Sagotsky, J., Deisboeck, T.S.: Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics 25, 2389–2396 (Oxford, England) (2009) Wang, Z., Birch, C.M., Sagotsky, J., Deisboeck, T.S.: Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics 25, 2389–2396 (Oxford, England) (2009)
45.
Zurück zum Zitat Conacci-Sorrell, M., Zhurinsky, J., Ben-Ze’ev, A.: The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Investig. 109(8), 987–991 (2002). doi:10.1172/JCI15429 Conacci-Sorrell, M., Zhurinsky, J., Ben-Ze’ev, A.: The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Investig. 109(8), 987–991 (2002). doi:10.​1172/​JCI15429
46.
Zurück zum Zitat Foty, R.A., Steinberg, M.S.: Cadherin-mediated cell–cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48(5–6), 397–409 (2004). doi:10.1387/ijdb.041810rf CrossRef Foty, R.A., Steinberg, M.S.: Cadherin-mediated cell–cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48(5–6), 397–409 (2004). doi:10.​1387/​ijdb.​041810rf CrossRef
47.
Zurück zum Zitat Ramis-Conde, I., Chaplain, M.A., Anderson, A.R., Drasdo, D.: Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol. 6(1), 16008 (2009)CrossRef Ramis-Conde, I., Chaplain, M.A., Anderson, A.R., Drasdo, D.: Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol. 6(1), 16008 (2009)CrossRef
48.
Zurück zum Zitat Ramis-Conde, I., Drasdo, D., Anderson, A.R., Chaplain, M.A.: Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J. 95(1), 155–165 (2008)CrossRef Ramis-Conde, I., Drasdo, D., Anderson, A.R., Chaplain, M.A.: Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J. 95(1), 155–165 (2008)CrossRef
49.
Zurück zum Zitat Christiansen, J.J., Rajasekaran, A.K.: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66(17), 8319–8326 (2006). 10.1158/0008-5472.CAN-06-0410, 66/17/8319 [pii]CrossRef Christiansen, J.J., Rajasekaran, A.K.: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66(17), 8319–8326 (2006). 10.1158/0008-5472.CAN-06-0410, 66/17/8319 [pii]CrossRef
50.
Zurück zum Zitat Kemler, R., Hierholzer, A., Kanzler, B., Kuppig, S., Hansen, K., Taketo, M.M., de Vries, W.N., Knowles, B.B., Solter, D.: Stabilization of beta-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131(23), 5817–5824 (2004). doi:10.1242/dev.01458 CrossRef Kemler, R., Hierholzer, A., Kanzler, B., Kuppig, S., Hansen, K., Taketo, M.M., de Vries, W.N., Knowles, B.B., Solter, D.: Stabilization of beta-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131(23), 5817–5824 (2004). doi:10.​1242/​dev.​01458 CrossRef
51.
Zurück zum Zitat Jankowski, J.A., Bruton, R., Shepherd, N., Sanders, D.S.: Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. Mol. Pathol. 50(6), 289–290 (1997)CrossRef Jankowski, J.A., Bruton, R., Shepherd, N., Sanders, D.S.: Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. Mol. Pathol. 50(6), 289–290 (1997)CrossRef
52.
Zurück zum Zitat Qi, J., Wang, J., Romanyuk, O., Siu, C.H.: Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol. Biol. Cell 17(3), 1261–1272 (2006). 10.1091/mbc.E05-10-0927, E05-10-0927 [pii]CrossRef Qi, J., Wang, J., Romanyuk, O., Siu, C.H.: Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol. Biol. Cell 17(3), 1261–1272 (2006). 10.1091/mbc.E05-10-0927, E05-10-0927 [pii]CrossRef
53.
Zurück zum Zitat McLachlan, R.W., Kraemer, A., Helwani, F.M., Kovacs, E.M., Yap, A.S.: E-cadherin adhesion activates c-Src signaling at cell–cell contacts. Mol. Biol. Cell 18(8), 3214–3223 (2007). doi:10.1091/mbc.E06-12-1154 CrossRef McLachlan, R.W., Kraemer, A., Helwani, F.M., Kovacs, E.M., Yap, A.S.: E-cadherin adhesion activates c-Src signaling at cell–cell contacts. Mol. Biol. Cell 18(8), 3214–3223 (2007). doi:10.​1091/​mbc.​E06-12-1154 CrossRef
54.
Zurück zum Zitat Walker, D., Wood, S., Southgate, J., Holcombe, M., Smallwood, R.: An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. J. Theor. Biol. 242(3), 774–789 (2006)MathSciNetCrossRef Walker, D., Wood, S., Southgate, J., Holcombe, M., Smallwood, R.: An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. J. Theor. Biol. 242(3), 774–789 (2006)MathSciNetCrossRef
55.
Zurück zum Zitat Walker, D.C., Georgopoulos, N.T., Southgate, J.: From pathway to population–a multiscale model of juxtacrine EGFR-MAPK signalling. BMC Syst. Biol. 2, 102 (2008)CrossRef Walker, D.C., Georgopoulos, N.T., Southgate, J.: From pathway to population–a multiscale model of juxtacrine EGFR-MAPK signalling. BMC Syst. Biol. 2, 102 (2008)CrossRef
56.
Zurück zum Zitat An, G.: Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor. Biol. Med. Model. 5, 11 (2008)CrossRef An, G.: Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor. Biol. Med. Model. 5, 11 (2008)CrossRef
57.
Zurück zum Zitat An, G.: A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math. Biosci. 217(1), 43–52 (2009)MathSciNetMATHCrossRef An, G.: A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math. Biosci. 217(1), 43–52 (2009)MathSciNetMATHCrossRef
58.
Zurück zum Zitat An, G.C., Faeder, J.R.: Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math. Biosci. 217(1), 53–63 (2009)MathSciNetMATHCrossRef An, G.C., Faeder, J.R.: Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math. Biosci. 217(1), 53–63 (2009)MathSciNetMATHCrossRef
59.
Zurück zum Zitat Sanga, S., Frieboes, H.B., Zheng, X., Gatenby, R., Bearer, E.L., Cristini, V.: Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. NeuroImage 37(Suppl 1), S120–S134 (2007)CrossRef Sanga, S., Frieboes, H.B., Zheng, X., Gatenby, R., Bearer, E.L., Cristini, V.: Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. NeuroImage 37(Suppl 1), S120–S134 (2007)CrossRef
Metadaten
Titel
Integration of Molecular Signaling into Multiscale Modeling of Cancer
verfasst von
Zhihui Wang
Vittorio Cristini
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2012_151

Neuer Inhalt