Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Intelligent Human–Robot Interaction Systems Using Reinforcement Learning and Neural Networks

verfasst von : Hamidreza Modares, Isura Ranatunga, Bakur AlQaudi, Frank L. Lewis, Dan O. Popa

Erschienen in: Trends in Control and Decision-Making for Human–Robot Collaboration Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, an intelligent human–robot system with adjustable robot autonomy is presented to assist the human operator to perform a given task with minimum workload demands and optimal performance. The proposed control methodology consists of two feedback loops: an inner loop that makes the robot with unknown dynamics behave like a prescribed impedance model as perceived by the operator, and an outer loop that finds the optimal parameters of this model to adjust the robot’s dynamics to the operator skills and minimize the tracking error. A nonlinear robust controller using neural networks is used in the inner loop to make the nonlinear unknown robot dynamics behave like a prescribed impedance model. The problem of finding the optimal parameters of the prescribed impedance model is formulated as an optimal control problem in the outer loop. The objective is to minimize the human effort and optimize the closed-loop behavior of the human–machine system for a given task. This design must take into account the unknown human dynamics as well as the desired overall performance of the human–robot system, which depends on the task. To obviate the requirement of the knowledge of the human model, reinforcement learning is used to learn the solution to the given optimal control problem online in real time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baron S, Kleinman DL, Levison WH (1970) An optimal control model of human response. part ii: prediction of human performance in a complex task. Automaica 6:371–383CrossRef Baron S, Kleinman DL, Levison WH (1970) An optimal control model of human response. part ii: prediction of human performance in a complex task. Automaica 6:371–383CrossRef
2.
Zurück zum Zitat Bertsekas DP (2012) Dynamic programming and optimal control: approximate dynamic programming, 4th edn. Athena Scientific, MassachusettsMATH Bertsekas DP (2012) Dynamic programming and optimal control: approximate dynamic programming, 4th edn. Athena Scientific, MassachusettsMATH
3.
Zurück zum Zitat Duchaine V, Gosselin C (2009) Safe, stable and intuitive control for physical human-robot interaction. In: Proceedings of the IEEE international conference on robotics and automation. Kobe, Japan, pp 3383–3388 Duchaine V, Gosselin C (2009) Safe, stable and intuitive control for physical human-robot interaction. In: Proceedings of the IEEE international conference on robotics and automation. Kobe, Japan, pp 3383–3388
4.
Zurück zum Zitat Frankin S, Wolpert DM, Franklin DM (2012) Visuomotor feedback gains upregulate during the learning of novel dynamics. J Neurophysiol 108:467–478CrossRef Frankin S, Wolpert DM, Franklin DM (2012) Visuomotor feedback gains upregulate during the learning of novel dynamics. J Neurophysiol 108:467–478CrossRef
5.
Zurück zum Zitat Furuta K, Kado Y, Shiratori S (2006) Assisting control in human adaptive mechatronics-single ball juggling. In: Proceedings of the IEEE international conference on control applications. Munich, Germany, pp 545–550 Furuta K, Kado Y, Shiratori S (2006) Assisting control in human adaptive mechatronics-single ball juggling. In: Proceedings of the IEEE international conference on control applications. Munich, Germany, pp 545–550
6.
Zurück zum Zitat Ge SS, Hang CC, Woon LC, Chen XQ (1998) Impedance control of robot manipulators using adaptive neural networks. Int J Intell Control Syst 2:433–452MathSciNet Ge SS, Hang CC, Woon LC, Chen XQ (1998) Impedance control of robot manipulators using adaptive neural networks. Int J Intell Control Syst 2:433–452MathSciNet
7.
Zurück zum Zitat Ge SS, Harris CJ (1998) Adaptive neural network control of robotic manipulators. World Scientific, SingaporeCrossRef Ge SS, Harris CJ (1998) Adaptive neural network control of robotic manipulators. World Scientific, SingaporeCrossRef
8.
Zurück zum Zitat Ge SS, Lee TH, Wang ZP (2001) Adaptive neural network control for smart materials robots using singular perturbation technique. Asian J Control 3:143–155CrossRef Ge SS, Lee TH, Wang ZP (2001) Adaptive neural network control for smart materials robots using singular perturbation technique. Asian J Control 3:143–155CrossRef
9.
Zurück zum Zitat Gribovskaya E, Kheddar A, Billard A (2011) Motion learning and adaptive impedance for robot control during physical interaction with humans. In: IEEE international conference on robotics and automation. Shanghai, China, pp 4326–4333 Gribovskaya E, Kheddar A, Billard A (2011) Motion learning and adaptive impedance for robot control during physical interaction with humans. In: IEEE international conference on robotics and automation. Shanghai, China, pp 4326–4333
10.
Zurück zum Zitat Hogan N (1985) Impedance control: an approach to manipulation. i: theory. ii: implementation. iii: applications. ASME Trans J Dyn Syst Meas Control 107:1–24CrossRefMATH Hogan N (1985) Impedance control: an approach to manipulation. i: theory. ii: implementation. iii: applications. ASME Trans J Dyn Syst Meas Control 107:1–24CrossRefMATH
11.
Zurück zum Zitat Huang L, Ge SS, Lee TH (2002) Neural network based adaptive impedance control of constrained robots. In: Proceedings of the IEEE international symposium on intelligent control. Vancouver, Canada, pp 615–619 Huang L, Ge SS, Lee TH (2002) Neural network based adaptive impedance control of constrained robots. In: Proceedings of the IEEE international symposium on intelligent control. Vancouver, Canada, pp 615–619
12.
Zurück zum Zitat Hussain S, Xie SQ, Jamwal PK (2013) Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans Cybern 43:1025–1034CrossRef Hussain S, Xie SQ, Jamwal PK (2013) Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans Cybern 43:1025–1034CrossRef
13.
Zurück zum Zitat Ikeura R, Moriguchi T, Mizutani K (2002) Optimal variable impedance control for a robot and its application to lifting an object with a human. In: Proceedings of the 11th IEEE international workshop robot-human interactive communication, Berlin, Germany, pp 500–505 Ikeura R, Moriguchi T, Mizutani K (2002) Optimal variable impedance control for a robot and its application to lifting an object with a human. In: Proceedings of the 11th IEEE international workshop robot-human interactive communication, Berlin, Germany, pp 500–505
14.
Zurück zum Zitat Jung S, Hsia TC (1998) Neural network impedance force control of robot manipulator. IEEE Trans Ind Electron 45:451–461CrossRef Jung S, Hsia TC (1998) Neural network impedance force control of robot manipulator. IEEE Trans Ind Electron 45:451–461CrossRef
15.
Zurück zum Zitat Kosuge K, Furuta K, Yokoyama T (1987) Virtual internal model following control of robot arms. In: Proceedings of the IEEE international conference on robotics and automation, pp 1549–1554 Kosuge K, Furuta K, Yokoyama T (1987) Virtual internal model following control of robot arms. In: Proceedings of the IEEE international conference on robotics and automation, pp 1549–1554
16.
Zurück zum Zitat Kurihara K, Suzuki S, Harashima F, Furuta K (2004) Human adaptive mechatronics (HAM) for haptic system. In: Proceedings of the 30th IEEE Annual Conference of the Industrial Electronics, Busan, Korea, pp 647–652 Kurihara K, Suzuki S, Harashima F, Furuta K (2004) Human adaptive mechatronics (HAM) for haptic system. In: Proceedings of the 30th IEEE Annual Conference of the Industrial Electronics, Busan, Korea, pp 647–652
17.
Zurück zum Zitat Lewis FL, Dawson DM, Abdallah CT (2003) Robot manipulator control: theory and practice, 2nd edn. CRC Press, Florida Lewis FL, Dawson DM, Abdallah CT (2003) Robot manipulator control: theory and practice, 2nd edn. CRC Press, Florida
18.
Zurück zum Zitat Lewis FL, Vraibe D, Syrmos V (2012) Optimal control, 3rd edn. Wiley, New Jersey Lewis FL, Vraibe D, Syrmos V (2012) Optimal control, 3rd edn. Wiley, New Jersey
19.
Zurück zum Zitat Lewis FL, Vraibe D, Vamvoudakis KG (2014) Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. IEEE Control Syst Mag 32:76–105MathSciNetCrossRef Lewis FL, Vraibe D, Vamvoudakis KG (2014) Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. IEEE Control Syst Mag 32:76–105MathSciNetCrossRef
20.
Zurück zum Zitat Lewis FL, Yesildirek A (1995) Neural net robot controller with guaranteed tracking performance. IEEE Trans Neural Netw 6:703–715CrossRef Lewis FL, Yesildirek A (1995) Neural net robot controller with guaranteed tracking performance. IEEE Trans Neural Netw 6:703–715CrossRef
21.
Zurück zum Zitat Lewis FL, Yesildirek A, Liu K (1996) Multilayer neural net robot controller with guaranteed tracking performance. IEEE Trans Neural Netw 7:388–399CrossRef Lewis FL, Yesildirek A, Liu K (1996) Multilayer neural net robot controller with guaranteed tracking performance. IEEE Trans Neural Netw 7:388–399CrossRef
22.
Zurück zum Zitat Li Y, Ge SS (2014) Human? robot collaboration based on motion intention estimation. IEEE/ASME Trans Mechatron 19:1007–1014CrossRef Li Y, Ge SS (2014) Human? robot collaboration based on motion intention estimation. IEEE/ASME Trans Mechatron 19:1007–1014CrossRef
23.
Zurück zum Zitat Li Y, Ge SS, Yang C (2011) Impedance control for multi-point human-robot interaction. In: Proceedings of the 8th Asian Control Conference, Kaohsiung, Taiwan, pp 1187–1192 Li Y, Ge SS, Yang C (2011) Impedance control for multi-point human-robot interaction. In: Proceedings of the 8th Asian Control Conference, Kaohsiung, Taiwan, pp 1187–1192
24.
Zurück zum Zitat Mitsantisuk C, Ohishi K, Katsura S (2011) Variable mechanical stiffness control based on human stiffness estimation. In: Proceedings of the IEEE international conference on mechatronics. Istanbul, Turkey, pp 731–736 Mitsantisuk C, Ohishi K, Katsura S (2011) Variable mechanical stiffness control based on human stiffness estimation. In: Proceedings of the IEEE international conference on mechatronics. Istanbul, Turkey, pp 731–736
26.
Zurück zum Zitat Oh S, Woo H, Kong K (2014) Frequency-shaped impedance control for safe human-robot interaction in reference tracking application. IEEE/ASME Trans Mechatron 19:1907–1916CrossRef Oh S, Woo H, Kong K (2014) Frequency-shaped impedance control for safe human-robot interaction in reference tracking application. IEEE/ASME Trans Mechatron 19:1907–1916CrossRef
27.
Zurück zum Zitat Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality. Wiley-Interscience, New YorkCrossRefMATH Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality. Wiley-Interscience, New YorkCrossRefMATH
28.
Zurück zum Zitat Stulp F et al (2012) Model-free reinforcement learning of impedance control in stochastic environments. IEEE Trans Auton Mental Develop 4:330–341CrossRef Stulp F et al (2012) Model-free reinforcement learning of impedance control in stochastic environments. IEEE Trans Auton Mental Develop 4:330–341CrossRef
29.
Zurück zum Zitat Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. Cambridge University Press, Cambridge Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. Cambridge University Press, Cambridge
30.
Zurück zum Zitat Suzuki S, Furuta K (2012) Adaptive impedance control to enhance human skill on a haptic interface system. J Control Sci Eng 2012:1–10MathSciNetCrossRefMATH Suzuki S, Furuta K (2012) Adaptive impedance control to enhance human skill on a haptic interface system. J Control Sci Eng 2012:1–10MathSciNetCrossRefMATH
31.
Zurück zum Zitat Tsuji T, Tanaka Y (2005) Tracking control properties of human-robotic systems based on impedance control. IEEE Trans Syst Man Cybern Part A 35:523–535CrossRef Tsuji T, Tanaka Y (2005) Tracking control properties of human-robotic systems based on impedance control. IEEE Trans Syst Man Cybern Part A 35:523–535CrossRef
32.
Zurück zum Zitat Tsumugiwa T, Yokogawa R, Hara K (2002) Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. In: Proceedings of the IEEE international conference on robotics and automation, pp 644–650 Tsumugiwa T, Yokogawa R, Hara K (2002) Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. In: Proceedings of the IEEE international conference on robotics and automation, pp 644–650
33.
Zurück zum Zitat Tustin A (1947) The nature of the operator’s response in manual control and its implications for controller design. J Inst Electric Eng 94:190–202 Tustin A (1947) The nature of the operator’s response in manual control and its implications for controller design. J Inst Electric Eng 94:190–202
34.
Zurück zum Zitat Vrabie D et al (2009) Adaptive optimal control for continuous-time linear systems based on policy iteration. Automatica 45:447–484MathSciNetCrossRef Vrabie D et al (2009) Adaptive optimal control for continuous-time linear systems based on policy iteration. Automatica 45:447–484MathSciNetCrossRef
35.
Zurück zum Zitat Vrabie D, Lewis FL (2009) Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Netw 22:237–246 Vrabie D, Lewis FL (2009) Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Netw 22:237–246
36.
Zurück zum Zitat Vraibe D, Vamvoudakis KG, Lewis FL (2012) Optimal adaptive control and differential games by reinforcement learning principles, control engineering series. IET Press Vraibe D, Vamvoudakis KG, Lewis FL (2012) Optimal adaptive control and differential games by reinforcement learning principles, control engineering series. IET Press
37.
Zurück zum Zitat Wang C et al (2013) Continuous critic learning for robot control in physical human-robot interaction. In: Proceedings of the 13th international conference on control, automation and system. Gwangju, Korea, pp 833–838 Wang C et al (2013) Continuous critic learning for robot control in physical human-robot interaction. In: Proceedings of the 13th international conference on control, automation and system. Gwangju, Korea, pp 833–838
38.
Zurück zum Zitat Xu G, Song A (2009) Adaptive impedance control based on dynamic recurrent fuzzy neural network for upper-limb rehabilitation robot. In: IEEE international conference on control, automation. Christchurch, New Zealand, pp 1376–1381 Xu G, Song A (2009) Adaptive impedance control based on dynamic recurrent fuzzy neural network for upper-limb rehabilitation robot. In: IEEE international conference on control, automation. Christchurch, New Zealand, pp 1376–1381
Metadaten
Titel
Intelligent Human–Robot Interaction Systems Using Reinforcement Learning and Neural Networks
verfasst von
Hamidreza Modares
Isura Ranatunga
Bakur AlQaudi
Frank L. Lewis
Dan O. Popa
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-40533-9_8

Neuer Inhalt