Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2011

01.10.2011

Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons

verfasst von: Justin R. Dunmyre, Christopher A. Del Negro, Jonathan E. Rubin

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The preBötzinger complex (preBötC) is a heterogeneous neuronal network within the mammalian brainstem that has been experimentally found to generate robust, synchronous bursts that drive the inspiratory phase of the respiratory rhythm. The persistent sodium (NaP) current is observed in every preBötC neuron, and significant modeling effort has characterized its contribution to square-wave bursting in the preBötC. Recent experimental work demonstrated that neurons within the preBötC are endowed with a calcium-activated nonspecific cationic (CAN) current that is activated by a signaling cascade initiated by glutamate. In a preBötC model, the CAN current was shown to promote robust bursts that experience depolarization block (DB bursts). We consider a self-coupled model neuron, which we represent as a single compartment based on our experimental finding of electrotonic compactness, under variation of g NaP, the conductance of the NaP current, and g CAN, the conductance of the CAN current. Varying these two conductances yields a spectrum of activity patterns, including quiescence, tonic activity, square-wave bursting, DB bursting, and a novel mixture of square-wave and DB bursts, which match well with activity that we observe in experimental preparations. We elucidate the mechanisms underlying these dynamics, as well as the transitions between these regimes and the occurrence of bistability, by applying the mathematical tools of bifurcation analysis and slow-fast decomposition. Based on the prevalence of NaP and CAN currents, we expect that the generalizable framework for modeling their interactions that we present may be relevant to the rhythmicity of other brain areas beyond the preBötC as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Best, J., Borisyuk, A., Rubin, J., Terman, D., & Wechselberger, M. (2005). The dynamic range of bursting in a model respiratory pacemaker network. SIAM Journal on Applied Dynamical Systems, 4(4), 1107–1139.CrossRef Best, J., Borisyuk, A., Rubin, J., Terman, D., & Wechselberger, M. (2005). The dynamic range of bursting in a model respiratory pacemaker network. SIAM Journal on Applied Dynamical Systems, 4(4), 1107–1139.CrossRef
Zurück zum Zitat Brockhaus, J., & Ballanyi, K. (1998). Synaptic inhibition in the isolated respiratory network of neonatal rats. European Journal of Neuroscience, 10(12), 3823–3839.PubMedCrossRef Brockhaus, J., & Ballanyi, K. (1998). Synaptic inhibition in the isolated respiratory network of neonatal rats. European Journal of Neuroscience, 10(12), 3823–3839.PubMedCrossRef
Zurück zum Zitat Butera, R., Rinzel, J., & Smith, J. (1999a). Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82(1), 382–397.PubMed Butera, R., Rinzel, J., & Smith, J. (1999a). Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82(1), 382–397.PubMed
Zurück zum Zitat Butera, R., Rinzel, J., & Smith, J. (1999b). Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons. Journal of Neurophysiology, 82(1), 398–415.PubMed Butera, R., Rinzel, J., & Smith, J. (1999b). Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons. Journal of Neurophysiology, 82(1), 398–415.PubMed
Zurück zum Zitat Crowder, E., Saha, M., Pace, R., Zhang, H., Prestwich, G., & Del Negro, C. (2007). Phosphatidylinositol 4, 5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. The Journal of Physiology, 582(3), 1047–1058.PubMedCrossRef Crowder, E., Saha, M., Pace, R., Zhang, H., Prestwich, G., & Del Negro, C. (2007). Phosphatidylinositol 4, 5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. The Journal of Physiology, 582(3), 1047–1058.PubMedCrossRef
Zurück zum Zitat Del Negro, C., Hayes, J., & Rekling, J. (2010). Dendritic calcium activity in preBötzinger complex neurons in neonatal mice studied in vitro. Journal of Neuroscience (submitted). Del Negro, C., Hayes, J., & Rekling, J. (2010). Dendritic calcium activity in preBötzinger complex neurons in neonatal mice studied in vitro. Journal of Neuroscience (submitted).
Zurück zum Zitat Del Negro, C., Johnson, S., Butera, R., & Smith, J. (2001). Models of respiratory rhythm generation in the pre-Botzinger complex. III. Experimental tests of model predictions. Journal of Neurophysiology, 86(1), 59–74.PubMed Del Negro, C., Johnson, S., Butera, R., & Smith, J. (2001). Models of respiratory rhythm generation in the pre-Botzinger complex. III. Experimental tests of model predictions. Journal of Neurophysiology, 86(1), 59–74.PubMed
Zurück zum Zitat Del Negro, C., Koshiya, N., Butera Jr., R., & Smith, J. (2002a). Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. Journal of Neurophysiology, 88(5), 2242–2250.PubMedCrossRef Del Negro, C., Koshiya, N., Butera Jr., R., & Smith, J. (2002a). Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. Journal of Neurophysiology, 88(5), 2242–2250.PubMedCrossRef
Zurück zum Zitat Del Negro, C., Morgado-Valle, C., & Feldman, J. (2002b). Respiratory rhythm: An emergent network property? Neuron, 34(5), 821–830.PubMedCrossRef Del Negro, C., Morgado-Valle, C., & Feldman, J. (2002b). Respiratory rhythm: An emergent network property? Neuron, 34(5), 821–830.PubMedCrossRef
Zurück zum Zitat Del Negro, C., Morgado-Valle, C., Hayes, J., Mackay, D., Pace, R., Crowder, E., et al. (2005). Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. Journal of Neuroscience, 25(2), 446–453.PubMedCrossRef Del Negro, C., Morgado-Valle, C., Hayes, J., Mackay, D., Pace, R., Crowder, E., et al. (2005). Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. Journal of Neuroscience, 25(2), 446–453.PubMedCrossRef
Zurück zum Zitat Dhooge, A., Govaerts, W., & Kuznetsov, Y. (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of O.D.E.s. ACM Transactions on Mathematical Software (TOMS), 29(2), 164.CrossRef Dhooge, A., Govaerts, W., & Kuznetsov, Y. (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of O.D.E.s. ACM Transactions on Mathematical Software (TOMS), 29(2), 164.CrossRef
Zurück zum Zitat Egorov, A., Hamam, B., Fransén, E., Hasselmo, M., & Alonso, A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420(6912), 173–178.PubMedCrossRef Egorov, A., Hamam, B., Fransén, E., Hasselmo, M., & Alonso, A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420(6912), 173–178.PubMedCrossRef
Zurück zum Zitat Ermentrout, G. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Society for Industrial Mathematics. Ermentrout, G. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Society for Industrial Mathematics.
Zurück zum Zitat Feldman, J., & Del Negro, C. (2006). Looking for inspiration: New perspectives on respiratory rhythm. Nature Reviews Neuroscience, 7(3), 232–241.PubMedCrossRef Feldman, J., & Del Negro, C. (2006). Looking for inspiration: New perspectives on respiratory rhythm. Nature Reviews Neuroscience, 7(3), 232–241.PubMedCrossRef
Zurück zum Zitat Feldman, J., & Smith, J. (1989). Cellular mechanisms underlying modulation of breathing pattern in mammals. Annals of the New York Academy of Sciences, 563(Modulation of Defined Vertebrate Neural Circuits), 114–130. Feldman, J., & Smith, J. (1989). Cellular mechanisms underlying modulation of breathing pattern in mammals. Annals of the New York Academy of Sciences, 563(Modulation of Defined Vertebrate Neural Circuits), 114–130.
Zurück zum Zitat Fransén, E., Tahvildari, B., Egorov, A., Hasselmo, M., & Alonso, A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron, 49(5), 735–746.PubMedCrossRef Fransén, E., Tahvildari, B., Egorov, A., Hasselmo, M., & Alonso, A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron, 49(5), 735–746.PubMedCrossRef
Zurück zum Zitat Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., et al. (2005). SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3), 363–396.CrossRef Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., et al. (2005). SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3), 363–396.CrossRef
Zurück zum Zitat Jones, C. (1994). Geometric singular perturbation theory. Dynamical Systems (Montecatini Terme, 1994), 1609, 44–118. Jones, C. (1994). Geometric singular perturbation theory. Dynamical Systems (Montecatini Terme, 1994), 1609, 44–118.
Zurück zum Zitat Koizumi, H., & Smith, J. (2008). Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. Journal of Neuroscience, 28(7), 1773–1785.PubMedCrossRef Koizumi, H., & Smith, J. (2008). Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. Journal of Neuroscience, 28(7), 1773–1785.PubMedCrossRef
Zurück zum Zitat Lee, R., & Heckman, C. (2001). Essential role of a fast persistent inward current in action potential initiation and control of rhythmic firing. Journal of Neurophysiology, 85(1), 472–427.PubMed Lee, R., & Heckman, C. (2001). Essential role of a fast persistent inward current in action potential initiation and control of rhythmic firing. Journal of Neurophysiology, 85(1), 472–427.PubMed
Zurück zum Zitat Liu, D., & Liman, E. (2003). Intracellular Ca2+ and the phospholipid P.I.P.2 regulate the taste transduction ion channel TRPM5. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15160–15165.PubMedCrossRef Liu, D., & Liman, E. (2003). Intracellular Ca2+ and the phospholipid P.I.P.2 regulate the taste transduction ion channel TRPM5. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15160–15165.PubMedCrossRef
Zurück zum Zitat Mironov, S. (2008). Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. The Journal of Physiology, 586(9), 2277–2291.PubMedCrossRef Mironov, S. (2008). Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. The Journal of Physiology, 586(9), 2277–2291.PubMedCrossRef
Zurück zum Zitat Morgado-Valle, C., Beltran-Parrazal, L., DiFranco, M., Vergara, J., & Feldman, J. (2008). Somatic Ca2+ transients do not contribute to inspiratory drive in preBötzinger complex neurons. The Journal of Physiology, 586(18), 4531.PubMedCrossRef Morgado-Valle, C., Beltran-Parrazal, L., DiFranco, M., Vergara, J., & Feldman, J. (2008). Somatic Ca2+ transients do not contribute to inspiratory drive in preBötzinger complex neurons. The Journal of Physiology, 586(18), 4531.PubMedCrossRef
Zurück zum Zitat Nilius, B., Mahieu, F., Prenen, J., Janssens, A., Owsianik, G., & Vennekens, R. (2006). The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4, 5-biphosphate. The EMBO Journal, 25(3), 467–478.PubMedCrossRef Nilius, B., Mahieu, F., Prenen, J., Janssens, A., Owsianik, G., & Vennekens, R. (2006). The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4, 5-biphosphate. The EMBO Journal, 25(3), 467–478.PubMedCrossRef
Zurück zum Zitat Pace, R., & Del Negro, C. (2008). A.M.P.A. and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro. European Journal of Neuroscience, 28(12), 2434–2442.PubMedCrossRef Pace, R., & Del Negro, C. (2008). A.M.P.A. and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro. European Journal of Neuroscience, 28(12), 2434–2442.PubMedCrossRef
Zurück zum Zitat Pace, R., Mackay, D., Feldman, J., & Del Negro, C. (2007a). Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. The Journal of Physiology, 582(1), 113–125.PubMedCrossRef Pace, R., Mackay, D., Feldman, J., & Del Negro, C. (2007a). Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. The Journal of Physiology, 582(1), 113–125.PubMedCrossRef
Zurück zum Zitat Pace, R., Mackay, D., Feldman, J., & Del Negro, C. (2007b). Role of persistent sodium current in mouse preBötzinger complex neurons and respiratory rhythm generation. The Journal of Physiology, 580(2), 485–496.PubMedCrossRef Pace, R., Mackay, D., Feldman, J., & Del Negro, C. (2007b). Role of persistent sodium current in mouse preBötzinger complex neurons and respiratory rhythm generation. The Journal of Physiology, 580(2), 485–496.PubMedCrossRef
Zurück zum Zitat Paton, J., Abdala, A., Koizumi, H., Smith, J., & St-John, W. (2006). Respiratory rhythm generation during gasping depends on persistent sodium current. Nature Neuroscience, 9(3), 311–313.PubMedCrossRef Paton, J., Abdala, A., Koizumi, H., Smith, J., & St-John, W. (2006). Respiratory rhythm generation during gasping depends on persistent sodium current. Nature Neuroscience, 9(3), 311–313.PubMedCrossRef
Zurück zum Zitat Ptak, K., Zummo, G., Alheid, G., Tkatch, T., Surmeier, D., & McCrimmon, D. (2005). Sodium currents in medullary neurons isolated from the pre-Botzinger complex region. Journal of Neuroscience, 25(21), 5159–5170.PubMedCrossRef Ptak, K., Zummo, G., Alheid, G., Tkatch, T., Surmeier, D., & McCrimmon, D. (2005). Sodium currents in medullary neurons isolated from the pre-Botzinger complex region. Journal of Neuroscience, 25(21), 5159–5170.PubMedCrossRef
Zurück zum Zitat Ren, J., & Greer, J. (2006). Modulation of respiratory rhythmogenesis by chloride-mediated conductances during the perinatal period. Journal of Neuroscience, 26(14), 3721–3730.PubMedCrossRef Ren, J., & Greer, J. (2006). Modulation of respiratory rhythmogenesis by chloride-mediated conductances during the perinatal period. Journal of Neuroscience, 26(14), 3721–3730.PubMedCrossRef
Zurück zum Zitat Rubin, J., & Terman, D. (2002). Synchronized activity and loss of synchrony among heterogeneous conditional oscillators. SIAM Journal on Applied Dynamical Systems, 1(1), 146–174.CrossRef Rubin, J., & Terman, D. (2002). Synchronized activity and loss of synchrony among heterogeneous conditional oscillators. SIAM Journal on Applied Dynamical Systems, 1(1), 146–174.CrossRef
Zurück zum Zitat Rubin, J., Shevtsova, N., Ermentrout, B., Smith, J., & Rybak, I. (2009a). Multiple rhythmic states in a model of the respiratory cpg. Journal of Neurophysiology, 101, 2146–2165.PubMedCrossRef Rubin, J., Shevtsova, N., Ermentrout, B., Smith, J., & Rybak, I. (2009a). Multiple rhythmic states in a model of the respiratory cpg. Journal of Neurophysiology, 101, 2146–2165.PubMedCrossRef
Zurück zum Zitat Rybak, I., Abdala, A., Markin, S., Paton, J., & Smith, J. (2007). Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Progress in Brain Research, 165, 201–220.PubMedCrossRef Rybak, I., Abdala, A., Markin, S., Paton, J., & Smith, J. (2007). Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Progress in Brain Research, 165, 201–220.PubMedCrossRef
Zurück zum Zitat Rybak, I., Shevtsova, N., St-John, W., Paton, J., & Pierrefiche, O. (2003). Endogenous rhythm generation in the pre-Botzinger complex and ionic currents: Modelling and in vitro studies. European Journal of Neuroscience, 18(2), 239–257.PubMedCrossRef Rybak, I., Shevtsova, N., St-John, W., Paton, J., & Pierrefiche, O. (2003). Endogenous rhythm generation in the pre-Botzinger complex and ionic currents: Modelling and in vitro studies. European Journal of Neuroscience, 18(2), 239–257.PubMedCrossRef
Zurück zum Zitat Rybak, I., Shevtsova, N., Ptak, K., & McCrimmon, D. (2004). Intrinsic bursting activity in the pre-Botzinger complex: Role of persistent sodium and potassium currents. Biological Cybernetics, 90(1), 59–74.PubMedCrossRef Rybak, I., Shevtsova, N., Ptak, K., & McCrimmon, D. (2004). Intrinsic bursting activity in the pre-Botzinger complex: Role of persistent sodium and potassium currents. Biological Cybernetics, 90(1), 59–74.PubMedCrossRef
Zurück zum Zitat Shao, X., & Feldman, J. (1997). Respiratory rhythm generation and inhibition of expiratory neurons in pre-Botzinger complex: Differential roles of glycinergic and G.A.B.A.ergic neuronal transmission. Journal of Neurophysiology, 77, 1853–1860.PubMed Shao, X., & Feldman, J. (1997). Respiratory rhythm generation and inhibition of expiratory neurons in pre-Botzinger complex: Differential roles of glycinergic and G.A.B.A.ergic neuronal transmission. Journal of Neurophysiology, 77, 1853–1860.PubMed
Zurück zum Zitat Smith, J., Abdala, A., Koizumi, H., Rybak, I., & Paton, J. (2007). Spatial and functional architecture of the mammalian brainstem respiratory network: A hierarchy of three oscillatory mechanisms. Journal of Neurophysiology, 98, 3370–3387.PubMedCrossRef Smith, J., Abdala, A., Koizumi, H., Rybak, I., & Paton, J. (2007). Spatial and functional architecture of the mammalian brainstem respiratory network: A hierarchy of three oscillatory mechanisms. Journal of Neurophysiology, 98, 3370–3387.PubMedCrossRef
Zurück zum Zitat Smith, J., Ellenberger, H., Ballanyi, K., Richter, D., & Feldman, J. (1991). Pre-Botzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science, 254(5032), 726.PubMedCrossRef Smith, J., Ellenberger, H., Ballanyi, K., Richter, D., & Feldman, J. (1991). Pre-Botzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science, 254(5032), 726.PubMedCrossRef
Zurück zum Zitat Tazerart, S., Viemari, J., Darbon, P., Vinay, L., & Brocard, F. (2007). Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. Journal of Neurophysiology, 98(2), 613–628.PubMedCrossRef Tazerart, S., Viemari, J., Darbon, P., Vinay, L., & Brocard, F. (2007). Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. Journal of Neurophysiology, 98(2), 613–628.PubMedCrossRef
Zurück zum Zitat Tazerart, S., Vinay, L., & Brocard, F. (2008). The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. Journal of Neuroscience, 28(34), 8577–8589.PubMedCrossRef Tazerart, S., Vinay, L., & Brocard, F. (2008). The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. Journal of Neuroscience, 28(34), 8577–8589.PubMedCrossRef
Zurück zum Zitat Toporikova, N., & Butera, R. (2010). Two types of independent bursting mechanisms in inspiratory neurons: An integrative model. Journal of Computational Neuroscience, 1–14. doi:10.1007/s10827-010-0274-z.PubMed Toporikova, N., & Butera, R. (2010). Two types of independent bursting mechanisms in inspiratory neurons: An integrative model. Journal of Computational Neuroscience, 1–14. doi:10.​1007/​s10827-010-0274-z.PubMed
Zurück zum Zitat Tsuruyama, K., Hsiao, C.-F., Nguyen, V. T., Chandler, S. H. (2008). Intracellular calcium signaling modulates rhythmical burst activity in rat trigeminal principal sensory neurons. Program No. 575.17. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience. Tsuruyama, K., Hsiao, C.-F., Nguyen, V. T., Chandler, S. H. (2008). Intracellular calcium signaling modulates rhythmical burst activity in rat trigeminal principal sensory neurons. Program No. 575.17. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience.
Zurück zum Zitat Wu, N., Enomoto, A., Tanaka, S., Hsiao, C., Nykamp, D., Izhikevich, E., et al. (2005). Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability. Journal of Neurophysiology, 93(5), 2710–2722.PubMedCrossRef Wu, N., Enomoto, A., Tanaka, S., Hsiao, C., Nykamp, D., Izhikevich, E., et al. (2005). Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability. Journal of Neurophysiology, 93(5), 2710–2722.PubMedCrossRef
Zurück zum Zitat Zhong, G., Masino, M., & Harris-Warrick, R. (2007). Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. Journal of Neuroscience, 27(17), 4507–4518.PubMedCrossRef Zhong, G., Masino, M., & Harris-Warrick, R. (2007). Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. Journal of Neuroscience, 27(17), 4507–4518.PubMedCrossRef
Metadaten
Titel
Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons
verfasst von
Justin R. Dunmyre
Christopher A. Del Negro
Jonathan E. Rubin
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0311-y

Weitere Artikel der Ausgabe 2/2011

Journal of Computational Neuroscience 2/2011 Zur Ausgabe