Skip to main content
Erschienen in: Optical and Quantum Electronics 7/2020

01.07.2020

Interband optical Raman gain in a strained oxide quantum dot with Hylleraas co-ordinates

verfasst von: A. John Peter, N. Karthikeyan, Chang Woo Lee

Erschienen in: Optical and Quantum Electronics | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Exciton Raman scattering of a three-level system is observed in a CdO/ZnO quantum dot using the size dependent Smorodinsky–Winternitz potential. Resonance Raman excitation for the fundamental optical transition is concentrated in the present work. The differential cross section of Raman optical intensity associated with the exciton is computed with the incident photon energy and the geometrical confinement effect. Raman differential cross section is found by the third-order harmonic generation. The built-in internal fields are incorporated in the heterostructure. They arise between the interior and outer core/shell materials in the heterostructure which contains the spontaneous polarization and piezoelectric polarization. The Hamiltonian of the exciton is included with the dielectric mismatch effect and the variational approach with Hylleraas co-ordinates are employed to obtain the energy eigen values numerically. The energy dependent effective mass of electron and the size related strain-induced potentials for the conduction and valence bands are incorporated in the Hamiltonian. The nonlinear optical properties are obtained with the density matrix approach. The results show that the Raman intensities are more influenced in the strong confinement region. The resonance peak Raman intensity is observed as 6.84 (arb.units) for a 60 Å spherical dot. The Raman gain is optimized by varying the dot size. And, the Raman optical gain as high as 240/cm is achieved for the dot radius, 22 Å of CdO/ZnO spherical quantum dot. This can be employed for the potential applications in optical devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aramburo, A.L.M., Echeverri, C.A.D., Arango, R.L.R.: Electron Raman scattering in pyramidal quantum dots. Revista EIA 12, 69 (2016)CrossRef Aramburo, A.L.M., Echeverri, C.A.D., Arango, R.L.R.: Electron Raman scattering in pyramidal quantum dots. Revista EIA 12, 69 (2016)CrossRef
Zurück zum Zitat Bala, K.J., Peter, A.J., Lee, C.W.: Interband and intersubband optical transition energies in a Ga0.7In0.3 N/GaN quantum dot. Optik 183, 1106 (2019)ADSCrossRef Bala, K.J., Peter, A.J., Lee, C.W.: Interband and intersubband optical transition energies in a Ga0.7In0.3 N/GaN quantum dot. Optik 183, 1106 (2019)ADSCrossRef
Zurück zum Zitat Baskoutas, S., Paspalakis, E., Terzis, A.F.: Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. Phys. Rev. B 74, 153306–153310 (2006)ADSCrossRef Baskoutas, S., Paspalakis, E., Terzis, A.F.: Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. Phys. Rev. B 74, 153306–153310 (2006)ADSCrossRef
Zurück zum Zitat Betancourt-Riera, R., Betancourt-Riera, R., Riera, R., Rosas, R.: Electron Raman scattering in asymmetrical multiple quantum wells system with an external electric field. Phys. E 44, 1152–1157 (2012)CrossRef Betancourt-Riera, R., Betancourt-Riera, R., Riera, R., Rosas, R.: Electron Raman scattering in asymmetrical multiple quantum wells system with an external electric field. Phys. E 44, 1152–1157 (2012)CrossRef
Zurück zum Zitat Butylkin, V.S.: Low-frequency asymptotic behavior of the Raman susceptibility of molecules. JETP 82(1), 38–45 (1996)ADS Butylkin, V.S.: Low-frequency asymptotic behavior of the Raman susceptibility of molecules. JETP 82(1), 38–45 (1996)ADS
Zurück zum Zitat Cantarero, A.: In: Bhushan, B. (ed.) Encyclopedia of Nanotechnology. Springer, Germany (2012) Cantarero, A.: In: Bhushan, B. (ed.) Encyclopedia of Nanotechnology. Springer, Germany (2012)
Zurück zum Zitat Cardona, M., Guntherodt, G.: Light Scattering in Solids V (Topics in Applied Physics Vol. 66). Springer, Heidelberg (1989)CrossRef Cardona, M., Guntherodt, G.: Light Scattering in Solids V (Topics in Applied Physics Vol. 66). Springer, Heidelberg (1989)CrossRef
Zurück zum Zitat Deyasi, A., Bhattacharyya, S.: Interband transition energy of circular quantum dots under transverse magnetic field. Phys. Proc. 54, 118–126 (2014)ADSCrossRef Deyasi, A., Bhattacharyya, S.: Interband transition energy of circular quantum dots under transverse magnetic field. Phys. Proc. 54, 118–126 (2014)ADSCrossRef
Zurück zum Zitat Deyasi, A., Bhattacharyya, S., Das, N.R.: Computation of intersubband transition energy in normal and inverted core–shell quantum dots using finite difference technique. Superlatt. Microstruct. 6, 414–425 (2013)ADSCrossRef Deyasi, A., Bhattacharyya, S., Das, N.R.: Computation of intersubband transition energy in normal and inverted core–shell quantum dots using finite difference technique. Superlatt. Microstruct. 6, 414–425 (2013)ADSCrossRef
Zurück zum Zitat Faist, J., Capasso, F., Sirtori, C., Sivco, D.L., Cho, A.Y.: In: Liu, H.C., Capasso, F. (eds.) Intersubband Transitions in Quantum Wells: Physics and Device Applications II, Semiconductors and Semimetals. Academic, San Diego (2000) Faist, J., Capasso, F., Sirtori, C., Sivco, D.L., Cho, A.Y.: In: Liu, H.C., Capasso, F. (eds.) Intersubband Transitions in Quantum Wells: Physics and Device Applications II, Semiconductors and Semimetals. Academic, San Diego (2000)
Zurück zum Zitat Feddi, E., Zouitine, A., Oukerroum, A., Dujardin, F., Assaid, E., Zazoui, M.: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. J. Appl. Phys. 117, 064309 (2015)ADSCrossRef Feddi, E., Zouitine, A., Oukerroum, A., Dujardin, F., Assaid, E., Zazoui, M.: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. J. Appl. Phys. 117, 064309 (2015)ADSCrossRef
Zurück zum Zitat Ferrara, M.A., Rendina, I., Sirleto, L.: Stimulated raman scattering in quantum dots and nanocomposite silicon based materials. In: Dr. Natalia Kamanina (ed.) Nonlinear Optics (2012) Ferrara, M.A., Rendina, I., Sirleto, L.: Stimulated raman scattering in quantum dots and nanocomposite silicon based materials. In: Dr. Natalia Kamanina (ed.) Nonlinear Optics (2012)
Zurück zum Zitat Gong, K., Kelley, D.F., Kelley, A.M.: Resonance Raman spectroscopy and electron–phonon coupling in zinc selenide quantum dots. J. Phys. Chem. C 120(51), 29533–29539 (2016)CrossRef Gong, K., Kelley, D.F., Kelley, A.M.: Resonance Raman spectroscopy and electron–phonon coupling in zinc selenide quantum dots. J. Phys. Chem. C 120(51), 29533–29539 (2016)CrossRef
Zurück zum Zitat Hui, P.: Quantum-confinement effects on binding energies and optical properties of excitons in quantum dots. Chin. Phys. Lett. 21(1), 160–163 (2004)CrossRef Hui, P.: Quantum-confinement effects on binding energies and optical properties of excitons in quantum dots. Chin. Phys. Lett. 21(1), 160–163 (2004)CrossRef
Zurück zum Zitat Ismailov, T.G., Mehdiyev, B.H.: Electron Raman scattering in a cylindrical quantum dot in a magnetic field. Phys. E 31, 72–77 (2006)CrossRef Ismailov, T.G., Mehdiyev, B.H.: Electron Raman scattering in a cylindrical quantum dot in a magnetic field. Phys. E 31, 72–77 (2006)CrossRef
Zurück zum Zitat Jin, M., Xie, W.: Simultaneous effects of hydrostatic pressure and temperature and effect of spin–orbit interaction on the third harmonic generation. Superlatt. Microstruc. 73, 330–341 (2014)ADSCrossRef Jin, M., Xie, W.: Simultaneous effects of hydrostatic pressure and temperature and effect of spin–orbit interaction on the third harmonic generation. Superlatt. Microstruc. 73, 330–341 (2014)ADSCrossRef
Zurück zum Zitat Kamanina, N.: Stimulated Raman Scattering in Quantum Dots and Nanocomposite Silicon Based Materials. Nonlinear Optics, Croatia (2012) Kamanina, N.: Stimulated Raman Scattering in Quantum Dots and Nanocomposite Silicon Based Materials. Nonlinear Optics, Croatia (2012)
Zurück zum Zitat Karabulut, I., Baskoutas, S.: Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512 –073517 (2008)ADSCrossRef Karabulut, I., Baskoutas, S.: Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512 –073517 (2008)ADSCrossRef
Zurück zum Zitat Karthikeyan, N., John Peter, A., Lee, C.W.: Optical rectification coefficient in an oxide quantum dot with different confinement potentials. Opt. Quant. Electron. 50, 412–425 (2018)CrossRef Karthikeyan, N., John Peter, A., Lee, C.W.: Optical rectification coefficient in an oxide quantum dot with different confinement potentials. Opt. Quant. Electron. 50, 412–425 (2018)CrossRef
Zurück zum Zitat Liu, C., Cheung, I.W., SpringThorpe, A.J., Dharma-waranda, C., Wasilewski, Z.R., Lockwood, D.J., Aers, G.C.: Intersubband Raman laser from Ga In As/Al In As double quantum wells. Appl. Phys. Lett. 78, 3580 (2001)ADSCrossRef Liu, C., Cheung, I.W., SpringThorpe, A.J., Dharma-waranda, C., Wasilewski, Z.R., Lockwood, D.J., Aers, G.C.: Intersubband Raman laser from Ga In As/Al In As double quantum wells. Appl. Phys. Lett. 78, 3580 (2001)ADSCrossRef
Zurück zum Zitat Lu, F., Liu, C.-H.: Effect of built-in electric field on electron Raman scattering in InGaN/GaN coupled quantum wells. Superlatt. Microstruct. 50, 582–589 (2011)ADSCrossRef Lu, F., Liu, C.-H.: Effect of built-in electric field on electron Raman scattering in InGaN/GaN coupled quantum wells. Superlatt. Microstruct. 50, 582–589 (2011)ADSCrossRef
Zurück zum Zitat Meulenberg, R.W., Lee, J.R.I., Wolcott, A., Zhang, J.Z., Terminello, L.J., van Buuren, T.: Determination of the exciton binding energy in CdSe quantum dots. ACS Nano 3(2), 325–330 (2009)CrossRef Meulenberg, R.W., Lee, J.R.I., Wolcott, A., Zhang, J.Z., Terminello, L.J., van Buuren, T.: Determination of the exciton binding energy in CdSe quantum dots. ACS Nano 3(2), 325–330 (2009)CrossRef
Zurück zum Zitat Miura, M., Katayama, S.: Electric-field effects on intersubband Raman laser gain in modulation-doped GaAs/AlGaAs coupled double quantum wells. Sci. Technol. Adv. Mat. 7, 286 (2006)CrossRef Miura, M., Katayama, S.: Electric-field effects on intersubband Raman laser gain in modulation-doped GaAs/AlGaAs coupled double quantum wells. Sci. Technol. Adv. Mat. 7, 286 (2006)CrossRef
Zurück zum Zitat Nicolay, S., Feltin, E., Carlin, J.-F., Grandjean, N., Nevou, L., Julien, F.H., Schmidbauer, M., Remmele, T., Albrecht, M.: Strain-induced interface instability in GaN/AlN multiple quantum wells. Appl. Phys. Lett. 91, 061927-1–061927-3 (2007)ADSCrossRef Nicolay, S., Feltin, E., Carlin, J.-F., Grandjean, N., Nevou, L., Julien, F.H., Schmidbauer, M., Remmele, T., Albrecht, M.: Strain-induced interface instability in GaN/AlN multiple quantum wells. Appl. Phys. Lett. 91, 061927-1–061927-3 (2007)ADSCrossRef
Zurück zum Zitat Pinczuk, A., Burstien, E., Cardona, M.: Light Scattering in Solids I; Springer Topics in Applied Physics, vol. 8. Springer, Heidelberg (1983) Pinczuk, A., Burstien, E., Cardona, M.: Light Scattering in Solids I; Springer Topics in Applied Physics, vol. 8. Springer, Heidelberg (1983)
Zurück zum Zitat Sirtori, C., Teissier, R.: In: Paiella, R. (ed) Intersubband Transitions in Quantum Structures, I ed. McGraw-Hill, New York (2006) Sirtori, C., Teissier, R.: In: Paiella, R. (ed) Intersubband Transitions in Quantum Structures, I ed. McGraw-Hill, New York (2006)
Zurück zum Zitat Solaimani, M., Moghadam, H.: Effects of interdiffusion and electric field on the optical rectification coefficient of GaAs/Alw Ga1—wAs systems: crossover from single to multiple quantum wells. Appl. Phys. A 126, 278–287 (2020)ADSCrossRef Solaimani, M., Moghadam, H.: Effects of interdiffusion and electric field on the optical rectification coefficient of GaAs/Alw Ga1—wAs systems: crossover from single to multiple quantum wells. Appl. Phys. A 126, 278–287 (2020)ADSCrossRef
Zurück zum Zitat Sun, G., Khurgin, J.B., Friedman, L., Soref, R.A.: Tunable intersubband Raman laser in GaAs/AlGaAs multiple quantum wells. J. Opt. Soc. Am. B 15, 648–651 (1998)ADSCrossRef Sun, G., Khurgin, J.B., Friedman, L., Soref, R.A.: Tunable intersubband Raman laser in GaAs/AlGaAs multiple quantum wells. J. Opt. Soc. Am. B 15, 648–651 (1998)ADSCrossRef
Zurück zum Zitat Taqi, A., Diouri, J.: A theoretical model for exciton binding energies in rectangular and parabolic spherical finite quantum dots. Semicond Phys Quant Electr Optoelectr 15(4), 365–369 (2012)CrossRef Taqi, A., Diouri, J.: A theoretical model for exciton binding energies in rectangular and parabolic spherical finite quantum dots. Semicond Phys Quant Electr Optoelectr 15(4), 365–369 (2012)CrossRef
Zurück zum Zitat Winternitz, P., Smorodinsk, Y.A., Uhlir, M., Fris, I.: Symmetry Groups in Classical and Quantum Mechanics. J. Nucl. Phys. 4, 444–450 (1967)MathSciNet Winternitz, P., Smorodinsk, Y.A., Uhlir, M., Fris, I.: Symmetry Groups in Classical and Quantum Mechanics. J. Nucl. Phys. 4, 444–450 (1967)MathSciNet
Zurück zum Zitat Xie, W.: Raman scattering of an exciton in a quantum dot. Phys. B Phys. B 413, 96–99 (2013a)ADS Xie, W.: Raman scattering of an exciton in a quantum dot. Phys. B Phys. B 413, 96–99 (2013a)ADS
Zurück zum Zitat Xie, W.: Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots. Superlatt. Microst. 53, 49–54 (2013b)ADSCrossRef Xie, W.: Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots. Superlatt. Microst. 53, 49–54 (2013b)ADSCrossRef
Zurück zum Zitat Xie, W.: Raman scattering of an exciton in a quantum dot. Phys. B 413, 96–99 (2013c)ADSCrossRef Xie, W.: Raman scattering of an exciton in a quantum dot. Phys. B 413, 96–99 (2013c)ADSCrossRef
Zurück zum Zitat Zhu, J.H., Wang, L.J., Zhang, S.M., Wang, H., Zhao, D.G., Zhu, J.J., Liu, Z.S., Jiang, D.S., Yang, H.: Simulation of the light extraction efficiency of nanostructure light-emitting diodes. Chin. Phys. B 20, 077804 (2011)ADSCrossRef Zhu, J.H., Wang, L.J., Zhang, S.M., Wang, H., Zhao, D.G., Zhu, J.J., Liu, Z.S., Jiang, D.S., Yang, H.: Simulation of the light extraction efficiency of nanostructure light-emitting diodes. Chin. Phys. B 20, 077804 (2011)ADSCrossRef
Metadaten
Titel
Interband optical Raman gain in a strained oxide quantum dot with Hylleraas co-ordinates
verfasst von
A. John Peter
N. Karthikeyan
Chang Woo Lee
Publikationsdatum
01.07.2020
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 7/2020
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-020-02465-8

Weitere Artikel der Ausgabe 7/2020

Optical and Quantum Electronics 7/2020 Zur Ausgabe