Skip to main content

2020 | OriginalPaper | Buchkapitel

9. Interface Characterization

verfasst von : Jose Martin Herrera Ramirez, Raul Perez Bustamante, Cesar Augusto Isaza Merino, Ana Maria Arizmendi Morquecho

Erschienen in: Unconventional Techniques for the Production of Light Alloys and Composites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study of the interfacial phenomena between the reinforcement and the matrix of metal matrix composites is of great importance. These interfacial phenomena have a direct influence on the mechanical properties of composites, since the load transfer between the metallic matrix and the reinforcement depends on the behavior of the interface. It is necessary to understand different aspects such as the chemical stability of the reinforcement in the matrix, the thermodynamic and kinetic aspects involved at the interface, wettability, and the influence of the composite manufacturing process on the matrix-reinforcement interface. This chapter presents and discusses results on such interface in composites of aluminum and magnesium reinforced with MWCNTs produced by the sandwich technique. TEM, HRTEM, and EELS techniques allowed for an in-depth analysis of the matrix-reinforcement interface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Coleman, J. N., et al. (2006). Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 44(9), 1624–1652.CrossRef Coleman, J. N., et al. (2006). Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 44(9), 1624–1652.CrossRef
2.
Zurück zum Zitat Dilandro, L., Dibenedetto, A., & Groeger, J. (1988). The effect of fiber-matrix stress transfer on the strength of fiber-reinforced composite materials. Polymer Composites, 9(3), 209–221.CrossRef Dilandro, L., Dibenedetto, A., & Groeger, J. (1988). The effect of fiber-matrix stress transfer on the strength of fiber-reinforced composite materials. Polymer Composites, 9(3), 209–221.CrossRef
3.
Zurück zum Zitat Piggott, M. (1989). The interface in carbon fibre composites. Carbon, 27(5), 657–662.CrossRef Piggott, M. (1989). The interface in carbon fibre composites. Carbon, 27(5), 657–662.CrossRef
4.
Zurück zum Zitat Chen, H., & Alpas, A. (1996). Wear of aluminium matrix composites reinforced with nickel-coated carbon fibres. Wear, 192(1-2), 186–198.CrossRef Chen, H., & Alpas, A. (1996). Wear of aluminium matrix composites reinforced with nickel-coated carbon fibres. Wear, 192(1-2), 186–198.CrossRef
5.
Zurück zum Zitat Poteet, C., & Halla, I. (1997). High strain rate properties of a unidirectionally reinforced C/A1 metal matrix composite. Materials Science and Engineering A, 222(1), 35–44.CrossRef Poteet, C., & Halla, I. (1997). High strain rate properties of a unidirectionally reinforced C/A1 metal matrix composite. Materials Science and Engineering A, 222(1), 35–44.CrossRef
6.
Zurück zum Zitat Vidal-Setif, M., et al. (1999). On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites. Materials Science and Engineering A, 272(2), 321–333.CrossRef Vidal-Setif, M., et al. (1999). On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites. Materials Science and Engineering A, 272(2), 321–333.CrossRef
7.
Zurück zum Zitat Laha, T., et al. (2007). Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Materialia, 55(3), 1059–1066.CrossRef Laha, T., et al. (2007). Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Materialia, 55(3), 1059–1066.CrossRef
8.
Zurück zum Zitat Tham, L., Gupta, M., & Cheng, L. (2001). Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Materialia, 49(16), 3243–3253.CrossRef Tham, L., Gupta, M., & Cheng, L. (2001). Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Materialia, 49(16), 3243–3253.CrossRef
9.
Zurück zum Zitat Kwon, H., et al. (2009). Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 47(3), 570–577.CrossRef Kwon, H., et al. (2009). Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 47(3), 570–577.CrossRef
10.
Zurück zum Zitat Yuan, Q.-h., et al., Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon, 2016. 96: p. 843-855. Yuan, Q.-h., et al., Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon, 2016. 96: p. 843-855.
11.
Zurück zum Zitat Ryou, J., & Hong, S. (2013). First-principles study of carbon atoms adsorbed on MgO (100) related to graphene growth. Current Applied Physics, 13(2), 327–330.CrossRef Ryou, J., & Hong, S. (2013). First-principles study of carbon atoms adsorbed on MgO (100) related to graphene growth. Current Applied Physics, 13(2), 327–330.CrossRef
12.
Zurück zum Zitat Wan, X.-J., & Lin, J.-G. (2011). Interfacial microstructure and chemical stability during diffusion bonding of single crystal Al2O3-fibres with Ni25. 8Al9. 6Ta8. 3Cr matrix. Transactions of Nonferrous Metals Society of China, 21(5), 1023–1028.CrossRef Wan, X.-J., & Lin, J.-G. (2011). Interfacial microstructure and chemical stability during diffusion bonding of single crystal Al2O3-fibres with Ni25. 8Al9. 6Ta8. 3Cr matrix. Transactions of Nonferrous Metals Society of China, 21(5), 1023–1028.CrossRef
13.
Zurück zum Zitat Li, C., et al. (2014). Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Materials Science and Engineering A, 597, 264–269.CrossRef Li, C., et al. (2014). Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Materials Science and Engineering A, 597, 264–269.CrossRef
14.
Zurück zum Zitat Shi, H., et al. (2014). A novel method to fabricate cNT/Mg–6Zn composites with high strengthening efficiency. Acta Metallurgica Sinica (English Letters), 27(5), 909–917.CrossRef Shi, H., et al. (2014). A novel method to fabricate cNT/Mg–6Zn composites with high strengthening efficiency. Acta Metallurgica Sinica (English Letters), 27(5), 909–917.CrossRef
15.
Zurück zum Zitat Landry, K., et al. (1997). Mechanisms of reactive wetting: the question of triple line configuration. Acta Materialia, 45(7), 3079–3085.CrossRef Landry, K., et al. (1997). Mechanisms of reactive wetting: the question of triple line configuration. Acta Materialia, 45(7), 3079–3085.CrossRef
16.
Zurück zum Zitat Zhang, Z., & Chen, D. (2008). Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Materials Science and Engineering A, 483, 148–152.CrossRef Zhang, Z., & Chen, D. (2008). Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Materials Science and Engineering A, 483, 148–152.CrossRef
17.
Zurück zum Zitat Zhang, Z., & Chen, D. (2006). Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Materialia, 54(7), 1321–1326.CrossRef Zhang, Z., & Chen, D. (2006). Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Materialia, 54(7), 1321–1326.CrossRef
18.
Zurück zum Zitat Sanaty-Zadeh, A. (2012). Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Materials Science and Engineering A, 531, 112–118.CrossRef Sanaty-Zadeh, A. (2012). Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Materials Science and Engineering A, 531, 112–118.CrossRef
19.
Zurück zum Zitat Nardone, V., & Prewo, K. (1986). On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Metallurgica, 20(1), 43–48.CrossRef Nardone, V., & Prewo, K. (1986). On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Metallurgica, 20(1), 43–48.CrossRef
20.
Zurück zum Zitat Hull, D., & Bacon, D. J. (2011). Introduction to dislocations (5th ed.). New York: Butterworth-Heinemann, Elsevier. Hull, D., & Bacon, D. J. (2011). Introduction to dislocations (5th ed.). New York: Butterworth-Heinemann, Elsevier.
21.
Zurück zum Zitat Agarwal, A., Bakshi, S. R., & Lahiri, D. (2018). Carbon nanotubes: Reinforced metal matrix composites. CRC Press. Agarwal, A., Bakshi, S. R., & Lahiri, D. (2018). Carbon nanotubes: Reinforced metal matrix composites. CRC Press.
22.
Zurück zum Zitat Coleman, J. N., et al. (2004). High performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Advanced Functional Materials, 14(8), 791–798.CrossRef Coleman, J. N., et al. (2004). High performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Advanced Functional Materials, 14(8), 791–798.CrossRef
23.
Zurück zum Zitat McQueen, H., & Kassner, M. (2004). Comments on ‘a model of continuous dynamic recrystallization’ proposed for aluminum. Scripta Materialia, 51(5), 461–465.CrossRef McQueen, H., & Kassner, M. (2004). Comments on ‘a model of continuous dynamic recrystallization’ proposed for aluminum. Scripta Materialia, 51(5), 461–465.CrossRef
24.
Zurück zum Zitat George, R., et al. (2005). Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Materialia, 53(10), 1159–1163.CrossRef George, R., et al. (2005). Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Materialia, 53(10), 1159–1163.CrossRef
25.
Zurück zum Zitat Orowan, E. (1934). über den mechanismus des gleitvorganges (Mechanisms of sliding process). Zeitschrift für Physik, 89, 634.CrossRef Orowan, E. (1934). über den mechanismus des gleitvorganges (Mechanisms of sliding process). Zeitschrift für Physik, 89, 634.CrossRef
26.
Zurück zum Zitat Ma, P.-C., et al. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345–1367.CrossRef Ma, P.-C., et al. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345–1367.CrossRef
27.
Zurück zum Zitat Singhal, S., et al. (2012). Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites. Powder Technology, 215, 254–263.CrossRef Singhal, S., et al. (2012). Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites. Powder Technology, 215, 254–263.CrossRef
28.
Zurück zum Zitat Isaza, C., Sierra, G., & Meza, J. (2016). A novel technique for production of metal matrix composites reinforced with carbon nanotubes. Journal of Manufacturing Science and Engineering, 138(2), 024501.CrossRef Isaza, C., Sierra, G., & Meza, J. (2016). A novel technique for production of metal matrix composites reinforced with carbon nanotubes. Journal of Manufacturing Science and Engineering, 138(2), 024501.CrossRef
29.
Zurück zum Zitat Isaza, M. C. A., et al. (2017). Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. Journal of Composite Materials, 51(11), 1619–1629.CrossRef Isaza, M. C. A., et al. (2017). Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. Journal of Composite Materials, 51(11), 1619–1629.CrossRef
30.
Zurück zum Zitat Merino, C. A. I., et al. (2017). Metal matrix composites reinforced with carbon nanotubes by an alternative technique. Journal of Alloys and Compounds, 707, 257–263.CrossRef Merino, C. A. I., et al. (2017). Metal matrix composites reinforced with carbon nanotubes by an alternative technique. Journal of Alloys and Compounds, 707, 257–263.CrossRef
31.
Zurück zum Zitat Jiang, L., et al. (2011). An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon, 49(6), 1965–1971.CrossRef Jiang, L., et al. (2011). An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon, 49(6), 1965–1971.CrossRef
32.
Zurück zum Zitat Morsi, K., & Esawi, A. (2007). Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. Journal of Materials Science, 42(13), 4954–4959.CrossRef Morsi, K., & Esawi, A. (2007). Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. Journal of Materials Science, 42(13), 4954–4959.CrossRef
33.
Zurück zum Zitat Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276.CrossRef Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276.CrossRef
34.
Zurück zum Zitat Chen, P. (2019). Twin-slip interaction in plastic deformation of magnesium. Reno: University of Nevada. Chen, P. (2019). Twin-slip interaction in plastic deformation of magnesium. Reno: University of Nevada.
Metadaten
Titel
Interface Characterization
verfasst von
Jose Martin Herrera Ramirez
Raul Perez Bustamante
Cesar Augusto Isaza Merino
Ana Maria Arizmendi Morquecho
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-48122-3_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.