Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 3/2021

24.02.2021 | Original Article

Intraoral radiograph anatomical region classification using neural networks

verfasst von: Nikolaos Kyventidis, Christos Angelopoulos

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Dental radiography represents 13% of all radiological diagnostic imaging. Eliminating the need for manual classification of digital intraoral radiographs could be especially impactful in terms of time savings and metadata quality. However, automating the task can be challenging due to the limited variation and possible overlap of the depicted anatomy. This study attempted to use neural networks to automate the classification of anatomical regions in intraoral radiographs among 22 unique anatomical classes.

Methods

Thirty-six literature-based neural network models were systematically developed and trained with full supervision and three different data augmentation strategies. Only libre software and limited computational resources were utilized. The training and validation datasets consisted of 15,254 intraoral periapical and bite-wing radiographs, previously obtained for diagnostic purposes. All models were then comparatively evaluated on a separate dataset as regards their classification performance. Top-1 accuracy, area-under-the-curve and F1-score were used as performance metrics. Pairwise comparisons were performed among all models with Mc Nemar’s test.

Results

Cochran's Q test indicated a statistically significant difference in classification performance across all models (p < 0.001). Post hoc analysis showed that while most models performed adequately on the task, advanced architectures used in deep learning such as VGG16, MobilenetV2 and InceptionResnetV2 were more robust to image distortions than those in the baseline group (MLPs, 3-block convolutional models). Advanced models exhibited classification accuracy ranging from 81 to 89%, F1-score between 0.71 and 0.86 and AUC of 0.86 to 0.94.

Conclusions

According to our findings, automated classification of anatomical classes in digital intraoral radiographs is feasible with an expected top-1 classification accuracy of almost 90%, even for images with significant distortions or overlapping anatomy. Model architecture, data augmentation strategies, the use of pooling and normalization layers as well as model capacity were identified as the factors most contributing to classification performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat [UNSCEAR] United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation (2008) UNSCEAR report to the General Assembly, with scientific annexes. United Nations, New York, p 2010 [UNSCEAR] United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation (2008) UNSCEAR report to the General Assembly, with scientific annexes. United Nations, New York, p 2010
3.
Zurück zum Zitat Horner K, Rushton VV, Tsiklakis K, Hirschmann P, Stelt PF, Glenny A, Velders X, Pavitt S (2004) European guidelines on radiation protection in dental radiology: the safe use of radiographs in dental practice. Radiat Prot 136:11–17 Horner K, Rushton VV, Tsiklakis K, Hirschmann P, Stelt PF, Glenny A, Velders X, Pavitt S (2004) European guidelines on radiation protection in dental radiology: the safe use of radiographs in dental practice. Radiat Prot 136:11–17
4.
Zurück zum Zitat Horner K (2012) Radiation protection in dental radiology. In: Proceedings of international conference 3–7 December 2012, International Atomic Energy Agency, Bonn, Germany, 2012 Horner K (2012) Radiation protection in dental radiology. In: Proceedings of international conference 3–7 December 2012, International Atomic Energy Agency, Bonn, Germany, 2012
5.
Zurück zum Zitat [NEMA] National Electrical Manufacturers Association (2005) Digital Imaging and Communications in Medicine, Supplement 60: Hanging Protocols, 2005 [NEMA] National Electrical Manufacturers Association (2005) Digital Imaging and Communications in Medicine, Supplement 60: Hanging Protocols, 2005
6.
Zurück zum Zitat [NEMA] National Electrical Manufacturers Association (2019) Digital Imaging and Communications in Medicine, PS3.17 2019d - Explanatory Information, 2019 [NEMA] National Electrical Manufacturers Association (2019) Digital Imaging and Communications in Medicine, PS3.17 2019d - Explanatory Information, 2019
7.
Zurück zum Zitat C. Langlotz, B. Allen, B. Erickson, J. Kalpathy-Cramer, K. Bigelow, T. Cook, A. Flanders, M. Lungren, D. Mendelson, J. Rudie, G. Wang, K. Kandarpa (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the (2018) NIH/RSNA/ACR/The academy workshop. Radiology 291:781–791CrossRef C. Langlotz, B. Allen, B. Erickson, J. Kalpathy-Cramer, K. Bigelow, T. Cook, A. Flanders, M. Lungren, D. Mendelson, J. Rudie, G. Wang, K. Kandarpa (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the (2018) NIH/RSNA/ACR/The academy workshop. Radiology 291:781–791CrossRef
8.
Zurück zum Zitat Deng J, Dong W, Socher R, Li J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition. IEEE, pp. 248–255 Deng J, Dong W, Socher R, Li J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition. IEEE, pp. 248–255
9.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25. Curran Associates, Inc., pp 1097–1105 Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25. Curran Associates, Inc., pp 1097–1105
10.
Zurück zum Zitat Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg A, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis IJCV 115:211–252CrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg A, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis IJCV 115:211–252CrossRef
11.
Zurück zum Zitat Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29:2352–2449CrossRef Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29:2352–2449CrossRef
12.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, Van Der Laak J, Van Ginneken B, Sánchez C (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, Van Der Laak J, Van Ginneken B, Sánchez C (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
13.
Zurück zum Zitat Bossuyt P, Reitsma J, Bruns D, Gatsonis C, Glasziou P, Irwig L, Lijmer J, Moher D, Rennie D, de Vet H, Kressel H, Rifai N, Golub R, Altman D, Hooft L, Korevaar D, Cohen J (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology 277(2015):826–832CrossRef Bossuyt P, Reitsma J, Bruns D, Gatsonis C, Glasziou P, Irwig L, Lijmer J, Moher D, Rennie D, de Vet H, Kressel H, Rifai N, Golub R, Altman D, Hooft L, Korevaar D, Cohen J (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology 277(2015):826–832CrossRef
15.
Zurück zum Zitat Simonyan K, Zisserman A, (2015) Very deep convolutional networks for large-scale image recognition, In: 3rd Int. Conf. Learn. Represent. ICLR 2015 San Diego CA USA May 7–9 2015 Conf. Track Proc Simonyan K, Zisserman A, (2015) Very deep convolutional networks for large-scale image recognition, In: 3rd Int. Conf. Learn. Represent. ICLR 2015 San Diego CA USA May 7–9 2015 Conf. Track Proc
16.
Zurück zum Zitat Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L (2018) MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEECVF conference on computer vision and pattern recognition, 2018, pp 4510–4520 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L (2018) MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEECVF conference on computer vision and pattern recognition, 2018, pp 4510–4520
17.
Zurück zum Zitat Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of thirty-first AAAI conference on artificial intelligence. AAAI Press, pp 4278–4284. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of thirty-first AAAI conference on artificial intelligence. AAAI Press, pp 4278–4284.
18.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: 2016 IEEE conference on computer vision and pattern recognition CVPR, 2016, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: 2016 IEEE conference on computer vision and pattern recognition CVPR, 2016, pp 2818–2826
19.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, 2015, pp 448–456 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, 2015, pp 448–456
20.
Zurück zum Zitat Lin M, Chen Q, Yan S (2014) Network In Network, In: 2nd Int. Conf. Learn. Represent. ICLR 2014 Banff AB Can. April 14-16 2014 Conf. Track Proc Lin M, Chen Q, Yan S (2014) Network In Network, In: 2nd Int. Conf. Learn. Represent. ICLR 2014 Banff AB Can. April 14-16 2014 Conf. Track Proc
21.
Zurück zum Zitat Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958
22.
Zurück zum Zitat Kingma D, Ba J (2015) Adam: a method for stochastic optimization, In: 3rd Int. Conf. Learn. Represent. ICLR 2015 San Diego CA USA May 7-9 2015 Conf. Track Proc Kingma D, Ba J (2015) Adam: a method for stochastic optimization, In: 3rd Int. Conf. Learn. Represent. ICLR 2015 San Diego CA USA May 7-9 2015 Conf. Track Proc
23.
Zurück zum Zitat Nair V, Hinton G (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of 27th international conference on international conference on machine learning, Omnipress, Madison, WI, USA, 2010, pp 807–814 Nair V, Hinton G (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of 27th international conference on international conference on machine learning, Omnipress, Madison, WI, USA, 2010, pp 807–814
24.
Zurück zum Zitat [NCHS] National Center for Health Statistics (1999) National Health and Nutrition Examination Survey Data., U.S. Department of Health and Human Services, Hyattsville, MD, 1999. [NCHS] National Center for Health Statistics (1999) National Health and Nutrition Examination Survey Data., U.S. Department of Health and Human Services, Hyattsville, MD, 1999.
25.
Zurück zum Zitat Dietterich T (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923CrossRef Dietterich T (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923CrossRef
26.
Zurück zum Zitat Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30 Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
27.
Zurück zum Zitat García S, Herrera F, Shawe-Taylor J (2008) An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res 9:2677–2694 García S, Herrera F, Shawe-Taylor J (2008) An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res 9:2677–2694
28.
Zurück zum Zitat Chow L, Paramesran R (2016) Review of medical image quality assessment. Biomed Signal Process Control 27:145–154CrossRef Chow L, Paramesran R (2016) Review of medical image quality assessment. Biomed Signal Process Control 27:145–154CrossRef
Metadaten
Titel
Intraoral radiograph anatomical region classification using neural networks
verfasst von
Nikolaos Kyventidis
Christos Angelopoulos
Publikationsdatum
24.02.2021
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 3/2021
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-021-02321-4

Weitere Artikel der Ausgabe 3/2021

International Journal of Computer Assisted Radiology and Surgery 3/2021 Zur Ausgabe

Premium Partner