Skip to main content
Erschienen in:
Buchtitelbild

2018 | Supplement | Buchkapitel

1. Introduction to Laser Metal Deposition Process

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing process is an advanced manufacturing process that fabricates components through the addition of materials as against the labour and energy intensive manufacturing processes which are based on material removal, or on application of heat and pressure. Laser metal deposition process belongs to a class of additive manufacturing process that can be used to fabricate three dimensional (3D) computer aided design model of the part by adding materials in a layer wise manner. Apart from the fabrication of 3D objects, laser metal deposition process can also be used to repair broken down parts and for the fabrication of parts that are made of composite and functionally graded materials. This important additive manufacturing technology is comprehensively dealt with in this book. This chapter briefly introduced the additive manufacturing (AM) process, the various classes of the AM technologies, laser metal deposition process, and the advantages as well as the limitation of these technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Evolutionary additive manufacturing: an overview. Lasers Eng 27:161–178 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Evolutionary additive manufacturing: an overview. Lasers Eng 27:161–178
3.
Zurück zum Zitat Velasco MA, Lancheros Y, Garzón-Alvarado DA (2016) Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system. J Comput Des Eng 3(4):385–397 Velasco MA, Lancheros Y, Garzón-Alvarado DA (2016) Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system. J Comput Des Eng 3(4):385–397
4.
Zurück zum Zitat Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4575330 Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4575330
5.
Zurück zum Zitat Husár B, Hatzenbichler M, Mironov V, Liska R, Stampfl J, Ovsianikov A (2014) Photopolymerization-based additive manufacturing for the development of 3D porous scaffolds. In: Biomaterials for bone regeneration. Woodhead Publishing, pp 149–201 Husár B, Hatzenbichler M, Mironov V, Liska R, Stampfl J, Ovsianikov A (2014) Photopolymerization-based additive manufacturing for the development of 3D porous scaffolds. In: Biomaterials for bone regeneration. Woodhead Publishing, pp 149–201
6.
Zurück zum Zitat Mitteramskogler G, Gmeiner R, Felzmann R, Gruber S, Hofstetter C, Stampfl J, Ebert J, Wachter W, Laubersheimer J (2014) Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf 1–4:110–118CrossRef Mitteramskogler G, Gmeiner R, Felzmann R, Gruber S, Hofstetter C, Stampfl J, Ebert J, Wachter W, Laubersheimer J (2014) Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf 1–4:110–118CrossRef
7.
Zurück zum Zitat Zhou M, Liu W, Wu H, Song X, Yong C, Lixia C, Fupo H, Shixi C, Shanghua W (2016) Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography—optimization of the drying and debinding processes. Ceram Int. 42(10):11598–11602 Zhou M, Liu W, Wu H, Song X, Yong C, Lixia C, Fupo H, Shixi C, Shanghua W (2016) Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography—optimization of the drying and debinding processes. Ceram Int. 42(10):11598–11602
8.
Zurück zum Zitat Haidong W, Cheng Y, Liu W, He R, Zhou M, Shanghua W, Song X, Chen Y (2016) Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram Int 42(15):17290–17294CrossRef Haidong W, Cheng Y, Liu W, He R, Zhou M, Shanghua W, Song X, Chen Y (2016) Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram Int 42(15):17290–17294CrossRef
9.
Zurück zum Zitat Meteyer S, Xin X, Perry N, Zhao YF (2014) Energy and material flow analysis of binder-jetting additive manufacturing processes. Proc CIRP 15:19–25CrossRef Meteyer S, Xin X, Perry N, Zhao YF (2014) Energy and material flow analysis of binder-jetting additive manufacturing processes. Proc CIRP 15:19–25CrossRef
10.
Zurück zum Zitat Gaytan SM, Cadena MA, Karim H, Delfin D, Lin Y, Espalin D, MacDonald E, Wicker RB (2015) Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceram Int 41(5, Part A):6610–6619 Gaytan SM, Cadena MA, Karim H, Delfin D, Lin Y, Espalin D, MacDonald E, Wicker RB (2015) Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceram Int 41(5, Part A):6610–6619
11.
Zurück zum Zitat Tang Y, Mak K, Zhao YF (2016) A framework to reduce product environmental impact through design optimization for additive manufacturing. J Cleaner Prod 137(20):1560–1572CrossRef Tang Y, Mak K, Zhao YF (2016) A framework to reduce product environmental impact through design optimization for additive manufacturing. J Cleaner Prod 137(20):1560–1572CrossRef
12.
Zurück zum Zitat Gonzalez JA, Mireles J, Lin Y, Wicker RB (2016) Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int 42(9):10559–10564CrossRef Gonzalez JA, Mireles J, Lin Y, Wicker RB (2016) Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int 42(9):10559–10564CrossRef
13.
Zurück zum Zitat Min H, Lee B, Jeong S, Lee M (2017) Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink. Opt Laser Technol 88:128–133CrossRef Min H, Lee B, Jeong S, Lee M (2017) Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink. Opt Laser Technol 88:128–133CrossRef
14.
Zurück zum Zitat Yan M, Zhou C, Tian X, Peng G, Cao Y, Li D (2016) Design and selective laser sintering of complex porous polyamide mould for pressure slip casting. Mater Des 111(5):198–205CrossRef Yan M, Zhou C, Tian X, Peng G, Cao Y, Li D (2016) Design and selective laser sintering of complex porous polyamide mould for pressure slip casting. Mater Des 111(5):198–205CrossRef
15.
Zurück zum Zitat Konečná R, Kunz L, Nicoletto G, Bača A (2016) Long fatigue crack growth in Inconel 718 produced by selective laser melting. Int J Fatigue 92(Part 2):499–506CrossRef Konečná R, Kunz L, Nicoletto G, Bača A (2016) Long fatigue crack growth in Inconel 718 produced by selective laser melting. Int J Fatigue 92(Part 2):499–506CrossRef
16.
Zurück zum Zitat Ahmadi A, Mirzaeifar R, Moghaddam NS, Turabi AS, Karaca HE, Elahinia M (2016) Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Mater Des 112:328–338 Ahmadi A, Mirzaeifar R, Moghaddam NS, Turabi AS, Karaca HE, Elahinia M (2016) Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Mater Des 112:328–338
17.
Zurück zum Zitat Bertoli US, Wolfer AJ, Matthews MJ, Delplanque JR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340 Bertoli US, Wolfer AJ, Matthews MJ, Delplanque JR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340
18.
Zurück zum Zitat Paul BK, Voorakarnam V (2001) Effect of layer thickness and orientation angle on surface roughness in laminated object manufacturing. J Manuf Proc 3(2):94–101 Paul BK, Voorakarnam V (2001) Effect of layer thickness and orientation angle on surface roughness in laminated object manufacturing. J Manuf Proc 3(2):94–101
19.
Zurück zum Zitat Ahn D, Kweon J-H, Choi J, Lee S (2012) Quantification of surface roughness of parts processed by laminated object manufacturing. J Mater Process Technol 212(2):339–346CrossRef Ahn D, Kweon J-H, Choi J, Lee S (2012) Quantification of surface roughness of parts processed by laminated object manufacturing. J Mater Process Technol 212(2):339–346CrossRef
20.
Zurück zum Zitat Butt J, Mebrahtu H, Shirvani H (2016) Microstructure and mechanical properties of dissimilar pure copper foil/1050 aluminium composites made with composite metal foil manufacturing. J Mater Process Technol 238:96–107CrossRef Butt J, Mebrahtu H, Shirvani H (2016) Microstructure and mechanical properties of dissimilar pure copper foil/1050 aluminium composites made with composite metal foil manufacturing. J Mater Process Technol 238:96–107CrossRef
21.
Zurück zum Zitat Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137(20):1573–1587CrossRef Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137(20):1573–1587CrossRef
22.
Zurück zum Zitat Sridharan N, Gussev M, Seibert R, Parish C, Norfolk M, Terrani K, Babu SS (2016) Rationalization of anisotropic mechanical properties of Al-6061 fabricated using ultrasonic additive manufacturing. Acta Mater 117:228–237 Sridharan N, Gussev M, Seibert R, Parish C, Norfolk M, Terrani K, Babu SS (2016) Rationalization of anisotropic mechanical properties of Al-6061 fabricated using ultrasonic additive manufacturing. Acta Mater 117:228–237
23.
Zurück zum Zitat Hehr A, Dapino MJ (2017) Dynamics of ultrasonic additive manufacturing. Ultrasonics 73:49–66CrossRef Hehr A, Dapino MJ (2017) Dynamics of ultrasonic additive manufacturing. Ultrasonics 73:49–66CrossRef
24.
Zurück zum Zitat Faes M, Vleugels J, Vogeler F, Ferraris E (2016) Extrusion-based additive manufacturing of ZrO2 using photoinitiated polymerization. CIRP J Manufact Sci Technol 14:28–34CrossRef Faes M, Vleugels J, Vogeler F, Ferraris E (2016) Extrusion-based additive manufacturing of ZrO2 using photoinitiated polymerization. CIRP J Manufact Sci Technol 14:28–34CrossRef
26.
Zurück zum Zitat Raasch J, Ivey M, Aldrich D, Nobes DS, Ayranci C (2015) Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit Manuf 8:132–141CrossRef Raasch J, Ivey M, Aldrich D, Nobes DS, Ayranci C (2015) Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit Manuf 8:132–141CrossRef
27.
Zurück zum Zitat Ravi AK, Deshpande A, Hsu KH (2016) An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Proc 24(Part 1):179–185 Ravi AK, Deshpande A, Hsu KH (2016) An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Proc 24(Part 1):179–185
28.
Zurück zum Zitat Seppala JE, Migler KD (2016) Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit Manuf 12(Part A):71–76 Seppala JE, Migler KD (2016) Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit Manuf 12(Part A):71–76
29.
Zurück zum Zitat Kakinuma Y, Mori M, Oda Y, Mori T, Kashihara M, Hansel A, Fujishima M (2016) Influence of metal powder characteristics on product quality with directed energy deposition of Inconel 625. CIRP Annals Manuf Technol 65(1):209–212CrossRef Kakinuma Y, Mori M, Oda Y, Mori T, Kashihara M, Hansel A, Fujishima M (2016) Influence of metal powder characteristics on product quality with directed energy deposition of Inconel 625. CIRP Annals Manuf Technol 65(1):209–212CrossRef
30.
Zurück zum Zitat Mazumder J (2017) 1—Laser-aided direct metal deposition of metals and alloys. In: M Brandt (Ed) Woodhead publishing series in electronic and optical materials. Woodhead Publishing, pp 21–53 Mazumder J (2017) 1—Laser-aided direct metal deposition of metals and alloys. In: M Brandt (Ed) Woodhead publishing series in electronic and optical materials. Woodhead Publishing, pp 21–53
31.
Zurück zum Zitat Carroll BE, Otis RA, Borgonia JP, Suh J-o, Peter Dillon R, Shapiro AA, Hofmann DC, Liu Z-K, Beese AM (2016) Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling. Acta Mater 108:46–54 Carroll BE, Otis RA, Borgonia JP, Suh J-o, Peter Dillon R, Shapiro AA, Hofmann DC, Liu Z-K, Beese AM (2016) Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling. Acta Mater 108:46–54
32.
Zurück zum Zitat Shim D-S, Baek G-Y, Seo J-S, Shin G-Y, Kim K-P, Lee K-Y (2016) Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Opt Laser Technol 86:69–78CrossRef Shim D-S, Baek G-Y, Seo J-S, Shin G-Y, Kim K-P, Lee K-Y (2016) Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Opt Laser Technol 86:69–78CrossRef
33.
Zurück zum Zitat Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110(15):226–235CrossRef Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110(15):226–235CrossRef
34.
Zurück zum Zitat Bimber BA, Hamilton RF, Keist J, Palmer TA (2016) Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng, A 674(30):125–134CrossRef Bimber BA, Hamilton RF, Keist J, Palmer TA (2016) Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng, A 674(30):125–134CrossRef
35.
Zurück zum Zitat Graf B, Gumenyuk A, Rethmeier M (2012) Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys Proc 39:376–381CrossRef Graf B, Gumenyuk A, Rethmeier M (2012) Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys Proc 39:376–381CrossRef
36.
Zurück zum Zitat Graf B, Ammer S, Gumenyuk A, Rethmeier M (2013) Design of experiments for laser metal deposition in maintenance, repair and overhaul applications. Proc CIRP 11:245–248CrossRef Graf B, Ammer S, Gumenyuk A, Rethmeier M (2013) Design of experiments for laser metal deposition in maintenance, repair and overhaul applications. Proc CIRP 11:245–248CrossRef
37.
Zurück zum Zitat Liu Q, Wang Y, Zheng H, Tang K, Li H, Gong S (2016) TC17 titanium alloy laser melting deposition repair process and properties. Opt Laser Technol 82:1–9CrossRef Liu Q, Wang Y, Zheng H, Tang K, Li H, Gong S (2016) TC17 titanium alloy laser melting deposition repair process and properties. Opt Laser Technol 82:1–9CrossRef
38.
Zurück zum Zitat Zhong C, Gasser A, Kittel J, Wissenbach K, Poprawe R (2016) Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition. Mater Des 98(15):128–134CrossRef Zhong C, Gasser A, Kittel J, Wissenbach K, Poprawe R (2016) Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition. Mater Des 98(15):128–134CrossRef
39.
Zurück zum Zitat Paydas H, Mertens A, Carrus R, Lecomte-Beckers J, Tchoufang Tchuindjang J (2015) Laser cladding as repair technology for Ti–6Al–4V alloy: influence of building strategy on microstructure and hardness. Mater Des 85:497–510 Paydas H, Mertens A, Carrus R, Lecomte-Beckers J, Tchoufang Tchuindjang J (2015) Laser cladding as repair technology for Ti–6Al–4V alloy: influence of building strategy on microstructure and hardness. Mater Des 85:497–510
40.
Zurück zum Zitat Raju R, Duraiselvam M, Petley V, Verma S, Rajendran R (2015) Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Mater Sci Eng A 643(3):64–71CrossRef Raju R, Duraiselvam M, Petley V, Verma S, Rajendran R (2015) Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Mater Sci Eng A 643(3):64–71CrossRef
41.
Zurück zum Zitat Petrat T, Graf B, Gumenyuk A, Rethmeier M (2016) Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718. Phys Proc 83:761–768CrossRef Petrat T, Graf B, Gumenyuk A, Rethmeier M (2016) Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718. Phys Proc 83:761–768CrossRef
42.
Zurück zum Zitat Leino M, Pekkarinen J, Soukka R (2016) The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing—enabling circular economy. Phys Proc 83:752–760CrossRef Leino M, Pekkarinen J, Soukka R (2016) The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing—enabling circular economy. Phys Proc 83:752–760CrossRef
43.
Zurück zum Zitat Ding Y, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comp Integr Manuf 44:67–76CrossRef Ding Y, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comp Integr Manuf 44:67–76CrossRef
44.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. In: Proceedings of the World Congress on Engineering (2012), vol III, WCE 2012, London, UK, July 4–6, pp.1593-1597 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. In: Proceedings of the World Congress on Engineering (2012), vol III, WCE 2012, London, UK, July 4–6, pp.1593-1597
45.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410CrossRef Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410CrossRef
46.
Zurück zum Zitat Muller P, Mognol P, Hascoet J-Y (2013) Modeling and control of a direct laser powder deposition process for functionally graded materials (FGM) parts manufacturing. J Mater Process Technol 213(5):685–692CrossRef Muller P, Mognol P, Hascoet J-Y (2013) Modeling and control of a direct laser powder deposition process for functionally graded materials (FGM) parts manufacturing. J Mater Process Technol 213(5):685–692CrossRef
47.
Zurück zum Zitat T-t Q, Dong Liu, Xiang-jun T, Chang-meng L, Hua-ming W (2014) Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process. Trans Nonferrous Metals Soc China 24(9):2729–2736CrossRef T-t Q, Dong Liu, Xiang-jun T, Chang-meng L, Hua-ming W (2014) Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process. Trans Nonferrous Metals Soc China 24(9):2729–2736CrossRef
48.
Zurück zum Zitat Durejko T, Ziętala M, Polkowski W, Czujko T (2014) Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology. Mater Des 63:766–774CrossRef Durejko T, Ziętala M, Polkowski W, Czujko T (2014) Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology. Mater Des 63:766–774CrossRef
49.
Zurück zum Zitat Amado JM, Montero J, Tobar MJ, Yáñez A (2014) Laser cladding of Ni-WC layers with graded WC content. Phys Proc 56:269–275CrossRef Amado JM, Montero J, Tobar MJ, Yáñez A (2014) Laser cladding of Ni-WC layers with graded WC content. Phys Proc 56:269–275CrossRef
50.
Zurück zum Zitat Kratky A (1937) Production of hard metal alloys. Patent # US 2076952 Kratky A (1937) Production of hard metal alloys. Patent # US 2076952
51.
Zurück zum Zitat Harter I (1942) Method of forming structures wholly of fusion deposited weld metal. Patent # US 2299747A Harter I (1942) Method of forming structures wholly of fusion deposited weld metal. Patent # US 2299747A
52.
Zurück zum Zitat Brown CO, Breinan EM, Kear BH (1982) Method for fabricating articles by sequential layer deposition. Patent # US 4323756A Brown CO, Breinan EM, Kear BH (1982) Method for fabricating articles by sequential layer deposition. Patent # US 4323756A
53.
Zurück zum Zitat Mehta PP, Otten RR, Cooper EB (1988) Method and apparatus for repairing metalin an article. Patent # US 4743733A Mehta PP, Otten RR, Cooper EB (1988) Method and apparatus for repairing metalin an article. Patent # US 4743733A
54.
Zurück zum Zitat Jeantette FP, Keicher DM, Romero JA, Schanwald LP (2000) Method and system for producing complex-shape objects. Patent # US 006046426A Jeantette FP, Keicher DM, Romero JA, Schanwald LP (2000) Method and system for producing complex-shape objects. Patent # US 006046426A
55.
Zurück zum Zitat Griffith M, Schlienger M, Harwell L (1998) Thermal behavior in the LENS process. In: No SAND–98-1850C; CONF-980826, Sandia Natl Labs, Albuquerque, NM, USA Griffith M, Schlienger M, Harwell L (1998) Thermal behavior in the LENS process. In: No SAND–98-1850C; CONF-980826, Sandia Natl Labs, Albuquerque, NM, USA
56.
Zurück zum Zitat Griffith M, Schlienger M, Harwell L, Oliver M, Baldwin M, Ensz M et al (1999) Understanding thermal behavior in the LENS process. Mater Des 20:107–113CrossRef Griffith M, Schlienger M, Harwell L, Oliver M, Baldwin M, Ensz M et al (1999) Understanding thermal behavior in the LENS process. Mater Des 20:107–113CrossRef
57.
Zurück zum Zitat Griffith ML, Hofmeister WH, Knorovsky GA, MacCallum DO, Schlienger ME, Smugeresky JE (2002) Direct laser additive fabrication system with image feedback control. Patent # US 6459951B1 Griffith ML, Hofmeister WH, Knorovsky GA, MacCallum DO, Schlienger ME, Smugeresky JE (2002) Direct laser additive fabrication system with image feedback control. Patent # US 6459951B1
58.
Zurück zum Zitat Griffith ML, Keicher DM, Atwood CL, Romero JA, Smugeresky JE, Harwell LD et al (1996) Free form fabrication of metallic components using laser engineered net shaping (LENSTM). In: Proceedings of 7th Solid Freeform Fabrication Symposium, Austin, USA, pp 125–132 Griffith ML, Keicher DM, Atwood CL, Romero JA, Smugeresky JE, Harwell LD et al (1996) Free form fabrication of metallic components using laser engineered net shaping (LENSTM). In: Proceedings of 7th Solid Freeform Fabrication Symposium, Austin, USA, pp 125–132
61.
Zurück zum Zitat Mazumder J, Qi H (2005) Fabrication of 3-D components by laser aided direct metal deposition. Proc SPIE Int Soc Opt Eng, 38–59 Mazumder J, Qi H (2005) Fabrication of 3-D components by laser aided direct metal deposition. Proc SPIE Int Soc Opt Eng, 38–59
62.
Zurück zum Zitat Weerasinghe VM, Steen WM (1987) Laser cladding with blown powder. Met Construct 19:581–585 Weerasinghe VM, Steen WM (1987) Laser cladding with blown powder. Met Construct 19:581–585
63.
Zurück zum Zitat Mazumder J, Schifferer A, Choi J (1998) Direct materials deposition: designed macro and microstructure. Mater Res Innovations 3:118–131CrossRef Mazumder J, Schifferer A, Choi J (1998) Direct materials deposition: designed macro and microstructure. Mater Res Innovations 3:118–131CrossRef
Metadaten
Titel
Introduction to Laser Metal Deposition Process
verfasst von
Rasheedat Modupe Mahamood
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-64985-6_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.