Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Zhuomin M. Zhang

Erschienen in: Nano/Microscale Heat Transfer

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Improvement of performance and shrinkage of device sizes in microelectronics have been major driving forces for scientific and economic progress over the past 40 years. Developments in semiconductor processing and surface sciences have allowed precise control over critical dimensions with desirable properties for solid-state devices. In the past 30 years, there have been tremendous developments in micro- and nanoelectromechanical systems (MEMS and NEMS), microfluidics and nanofluidics, quantum structures and devices, photonics and optoelectronics, nanomaterials for molecular sensing and biomedical diagnosis, and scanning probe microscopy for measurement and manipulation at the molecular and atomic levels. This book was motivated by the need to understand the thermal phenomena and heat transfer processes in micro/nanosystems and at very short time scales for solving problems occurring in contemporary and future technologies. Since the first publication in 2007, many universities have offered micro/nanoscale heat transfer courses and used it as either the textbook or major reference. Significant progress has been made in the last decade and this second edition reflects a major update. This chapter gives an introduction of the thermal issues associated with nanotechnology and an outline of the rest of the chapters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003) C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003)
2.
Zurück zum Zitat E.L. Wolf, Nanophysics and Nanotechnology—An Introduction to Modern Concepts in Nanoscience (Wiley-VCH, Weinheim, Germany, 2004) E.L. Wolf, Nanophysics and Nanotechnology—An Introduction to Modern Concepts in Nanoscience (Wiley-VCH, Weinheim, Germany, 2004)
3.
Zurück zum Zitat C.L. Tien, A. Majumdar, F.M. Gerner (eds.), Microscale Energy Transport (Taylor & Francis, Washington, DC, 1998) C.L. Tien, A. Majumdar, F.M. Gerner (eds.), Microscale Energy Transport (Taylor & Francis, Washington, DC, 1998)
4.
Zurück zum Zitat G. Chen, Nanoscale Energy Transport and Conversion (Oxford University Press, New York, 2005) G. Chen, Nanoscale Energy Transport and Conversion (Oxford University Press, New York, 2005)
6.
Zurück zum Zitat G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965) G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)
8.
Zurück zum Zitat M. Mitchell Wardrop, More than Moore. Nature 530, 144–147 (2016) M. Mitchell Wardrop, More than Moore. Nature 530, 144–147 (2016)
9.
Zurück zum Zitat Z.M. Zhang, B.K. Tsai, G. Machin, Radiometric Temperature Measurements: I. Fundamentals; II. Applications (Academic Press/Elsevier, Amsterdam, 2009) Z.M. Zhang, B.K. Tsai, G. Machin, Radiometric Temperature Measurements: I. Fundamentals; II. Applications (Academic Press/Elsevier, Amsterdam, 2009)
10.
Zurück zum Zitat C.-H. Fan, J.P. Longtin, Radiative energy transport at the spatial and temporal micro/nano scales. In: Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures, M. Faghri, B. Sunden (eds.) (WIT Press, Southampton, UK, 2003), pp. 225–275 C.-H. Fan, J.P. Longtin, Radiative energy transport at the spatial and temporal micro/nano scales. In: Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures, M. Faghri, B. Sunden (eds.) (WIT Press, Southampton, UK, 2003), pp. 225–275
11.
Zurück zum Zitat W. Denk, J.H. Stricker, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990) W. Denk, J.H. Stricker, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)
12.
Zurück zum Zitat T. Yu, C.K. Ober, S.M. Kuebler, W. Zhou, S.R. Marder, J.W. Perry, Chemically-amplified positive resist system for two-photon three-dimensional lithography. Adv. Mat. 15, 517–521 (2003) T. Yu, C.K. Ober, S.M. Kuebler, W. Zhou, S.R. Marder, J.W. Perry, Chemically-amplified positive resist system for two-photon three-dimensional lithography. Adv. Mat. 15, 517–521 (2003)
13.
Zurück zum Zitat S.M. Kuebler, K.L. Braun, W. Zhou et al., Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. J. Photochem. Photobio. A: Chemistry 158, 163–170 (2003) S.M. Kuebler, K.L. Braun, W. Zhou et al., Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. J. Photochem. Photobio. A: Chemistry 158, 163–170 (2003)
14.
Zurück zum Zitat M.F. Modest, H. Abakians, Heat-conduction in a moving semi-infinite solid subject to pulsed laser irradiation. J. Heat Transfer 108, 597–601 (1986) M.F. Modest, H. Abakians, Heat-conduction in a moving semi-infinite solid subject to pulsed laser irradiation. J. Heat Transfer 108, 597–601 (1986)
15.
Zurück zum Zitat M.F. Modest, H. Abakians, Evaporative cutting of a semi-infinite body with a moving cw laser. J. Heat Transfer 108, 602–607 (1986) M.F. Modest, H. Abakians, Evaporative cutting of a semi-infinite body with a moving cw laser. J. Heat Transfer 108, 602–607 (1986)
16.
Zurück zum Zitat C.L. Tien, T.Q. Qiu, P.M. Norris, Microscale thermal phenomena in contemporary technology. Thermal Sci. Eng. 2, 1–11 (1994) C.L. Tien, T.Q. Qiu, P.M. Norris, Microscale thermal phenomena in contemporary technology. Thermal Sci. Eng. 2, 1–11 (1994)
17.
Zurück zum Zitat R.J. Stoner, H.J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373–16387 (1993) R.J. Stoner, H.J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373–16387 (1993)
18.
Zurück zum Zitat W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, D.S. Katzer, Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105–8113 (1999) W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, D.S. Katzer, Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105–8113 (1999)
19.
Zurück zum Zitat P.M. Norris, A.P. Caffrey, R. Stevens, J.M. Klopf, J.T. McLeskey, A.N. Smith, Femtosecond pump-probe nondestructive evaluation of materials. Rev. Sci. Instrum. 74, 400–406 (2003) P.M. Norris, A.P. Caffrey, R. Stevens, J.M. Klopf, J.T. McLeskey, A.N. Smith, Femtosecond pump-probe nondestructive evaluation of materials. Rev. Sci. Instrum. 74, 400–406 (2003)
20.
Zurück zum Zitat R.J. Stevens, A.N. Smith, P.M. Norris, Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance techniques. J. Heat Transfer 127, 315–322 (2005) R.J. Stevens, A.N. Smith, P.M. Norris, Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance techniques. J. Heat Transfer 127, 315–322 (2005)
21.
Zurück zum Zitat O. Manasreh, Semiconductor Heterojunctions and Nanostructures (McGraw-Hill, New York, 2005) O. Manasreh, Semiconductor Heterojunctions and Nanostructures (McGraw-Hill, New York, 2005)
22.
Zurück zum Zitat G. Chen, Heat transfer in micro- and nanoscale photonic devices. Annu. Rev. Heat Transfer 7, 1–18 (1996) G. Chen, Heat transfer in micro- and nanoscale photonic devices. Annu. Rev. Heat Transfer 7, 1–18 (1996)
23.
Zurück zum Zitat Y. Jaluria, Thermal processing of materials: From basic research to engineering. J. Heat Transfer 125, 957–979 (2003) Y. Jaluria, Thermal processing of materials: From basic research to engineering. J. Heat Transfer 125, 957–979 (2003)
24.
Zurück zum Zitat X. Cheng, Y. Jaluria, Optimization of a thermal manufacturing process: drawing of optical fiber. Intl. J. Heat Mass Transfer 48, 3560–3573 (2005)MATH X. Cheng, Y. Jaluria, Optimization of a thermal manufacturing process: drawing of optical fiber. Intl. J. Heat Mass Transfer 48, 3560–3573 (2005)MATH
25.
Zurück zum Zitat C. Chen, Y. Jaluria, Modeling of radiation heat transfer in the drawing of an optical fiber with multi-layer structure. J. Heat Transfer 129, 342–352 (2007) C. Chen, Y. Jaluria, Modeling of radiation heat transfer in the drawing of an optical fiber with multi-layer structure. J. Heat Transfer 129, 342–352 (2007)
26.
Zurück zum Zitat Z.M. Zhang, S. Maruyama, A. Sakurai, M.P. Menguç, Special issue on nano- and micro-scale radiative transfer. J. Quant. Spectrosc. Radiat. Transfer 132, 1–2 (2014) Z.M. Zhang, S. Maruyama, A. Sakurai, M.P. Menguç, Special issue on nano- and micro-scale radiative transfer. J. Quant. Spectrosc. Radiat. Transfer 132, 1–2 (2014)
27.
Zurück zum Zitat Z.M. Zhang, L.-H. Liu, Q.Z. Zhu, M.P. Menguç, Special issue on the second international workshop on micro-nano thermal radiation. J. Quant. Spectrosc. Radiat. Transfer 158, 1–2 (2015) Z.M. Zhang, L.-H. Liu, Q.Z. Zhu, M.P. Menguç, Special issue on the second international workshop on micro-nano thermal radiation. J. Quant. Spectrosc. Radiat. Transfer 158, 1–2 (2015)
28.
Zurück zum Zitat B.J. Lee, Y. Shuai, M. Francoeur, M.P. Mengüç, Special issue on the third international workshop on nano-micro thermal radiation. J. Quant. Spectrosc. Radiat. Transfer 237, 106592 (2019) B.J. Lee, Y. Shuai, M. Francoeur, M.P. Mengüç, Special issue on the third international workshop on nano-micro thermal radiation. J. Quant. Spectrosc. Radiat. Transfer 237, 106592 (2019)
29.
Zurück zum Zitat K. Kim, B. Song, V. Fernández-Hurtado et al., Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015) K. Kim, B. Song, V. Fernández-Hurtado et al., Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015)
30.
Zurück zum Zitat M. Lim, J. Song, S.S. Lee, B.J. Lee, Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018) M. Lim, J. Song, S.S. Lee, B.J. Lee, Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018)
31.
Zurück zum Zitat J. DeSutter, L. Tang, M. Francoeur, A near-field radiative heat transfer device. Nat. Nanotech. 14, 751–755 (2019) J. DeSutter, L. Tang, M. Francoeur, A near-field radiative heat transfer device. Nat. Nanotech. 14, 751–755 (2019)
32.
Zurück zum Zitat R.P. Feynman, There’s plenty of room at the bottom. J. Microelectromechanical Syst. 1, 60–66 (1992) R.P. Feynman, There’s plenty of room at the bottom. J. Microelectromechanical Syst. 1, 60–66 (1992)
34.
Zurück zum Zitat M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, FL, 2002) M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, FL, 2002)
35.
Zurück zum Zitat H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985) H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)
36.
Zurück zum Zitat E.O. Sunden, T.L. Wright, J. Lee, W.P. King, S. Graham, Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever. Appl. Phys. Lett. 88, 033107 (2006) E.O. Sunden, T.L. Wright, J. Lee, W.P. King, S. Graham, Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever. Appl. Phys. Lett. 88, 033107 (2006)
37.
Zurück zum Zitat K. Hirahara, K. Suenaga, S. Bandow, et al., One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85, 5384 (2000). Also see Phys. Rev. Focus, 19 December 2000, http://focus.aps.org/story/v6/st27 K. Hirahara, K. Suenaga, S. Bandow, et al., One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85, 5384 (2000). Also see Phys. Rev. Focus, 19 December 2000, http://​focus.​aps.​org/​story/​v6/​st27
38.
Zurück zum Zitat P.X. Gao, Y. Ding, W.J. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Conversion of zinc oxide nanobelt into superlattice-structured nanohelices. Science 309, 1700–1704 (2005) P.X. Gao, Y. Ding, W.J. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Conversion of zinc oxide nanobelt into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)
39.
Zurück zum Zitat X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 309, 1348–1351 (2004) X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 309, 1348–1351 (2004)
40.
Zurück zum Zitat A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007) A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)
41.
Zurück zum Zitat V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based material: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011) V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based material: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)
42.
Zurück zum Zitat E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012) E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)
43.
Zurück zum Zitat F.H. Koppens, D.E. Chang, F.J. Garcia de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011) F.H. Koppens, D.E. Chang, F.J. Garcia de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011)
44.
Zurück zum Zitat D.N. Basov, M.M. Fogler, A. Lanzara, F. Wang, Y. Zhang, Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959–994 (2014) D.N. Basov, M.M. Fogler, A. Lanzara, F. Wang, Y. Zhang, Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959–994 (2014)
45.
Zurück zum Zitat K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016) K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)
46.
Zurück zum Zitat C. Tan, X. Cao, X.J. Wu et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017) C. Tan, X. Cao, X.J. Wu et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)
47.
Zurück zum Zitat C. Shao, X. Yu, N. Yang, Y. Yue, H. Bao, A review of thermal transport in low- dimensional materials under external perturbation: effect of strain, substrate, and clustering. Nanoscale Microscale Thermophys. Eng. 21, 201–236 (2017) C. Shao, X. Yu, N. Yang, Y. Yue, H. Bao, A review of thermal transport in low- dimensional materials under external perturbation: effect of strain, substrate, and clustering. Nanoscale Microscale Thermophys. Eng. 21, 201–236 (2017)
48.
Zurück zum Zitat X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017) X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)
49.
Zurück zum Zitat P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986) P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986)
50.
Zurück zum Zitat M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988) M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)
51.
Zurück zum Zitat Y. Yang, W. Liu, M. Asheghi, Thermal and electrical characterization of Cu/CoFe superlattices. Appl. Phys. Lett. 84, 3121–3123 (2004) Y. Yang, W. Liu, M. Asheghi, Thermal and electrical characterization of Cu/CoFe superlattices. Appl. Phys. Lett. 84, 3121–3123 (2004)
52.
Zurück zum Zitat Y. Yang, R.M. White, M. Asheghi, Thermal characterization of Cu/CoFe multilayer for giant magnetoresistive (GMR) head applications. J. Heat Transfer 128, 113–120 (2006) Y. Yang, R.M. White, M. Asheghi, Thermal characterization of Cu/CoFe multilayer for giant magnetoresistive (GMR) head applications. J. Heat Transfer 128, 113–120 (2006)
53.
Zurück zum Zitat A. Datta, X. Xu, Infrared near-field transducer for heat-assisted magnetic recording. IEEE Trans. Magnet. 53, 3102105 (2017); ibid, Optical and thermal designs of near field transducer for heat assisted magnetic recording. Japan. J. Appl. Phys. 57, 09TA01 (2018) A. Datta, X. Xu, Infrared near-field transducer for heat-assisted magnetic recording. IEEE Trans. Magnet. 53, 3102105 (2017); ibid, Optical and thermal designs of near field transducer for heat assisted magnetic recording. Japan. J. Appl. Phys. 57, 09TA01 (2018)
54.
Zurück zum Zitat G. Binnig, H. Rohrer, Scanning tunneling microscopy. Helv. Phys. Acta 55, 726–735 (1982) G. Binnig, H. Rohrer, Scanning tunneling microscopy. Helv. Phys. Acta 55, 726–735 (1982)
55.
Zurück zum Zitat G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982) G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)
56.
Zurück zum Zitat G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120–123 (1983) G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120–123 (1983)
57.
Zurück zum Zitat M.F. Crommie, C.P. Lutz, D.M. Eigler, Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993) M.F. Crommie, C.P. Lutz, D.M. Eigler, Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993)
58.
Zurück zum Zitat G. Binnig, C.F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986) G. Binnig, C.F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)
59.
Zurück zum Zitat C.C. Williams, H.K. Wickramasinghe, Scanning thermal profiler. Appl. Phys. Lett. 49, 1587–89 (1986) C.C. Williams, H.K. Wickramasinghe, Scanning thermal profiler. Appl. Phys. Lett. 49, 1587–89 (1986)
60.
Zurück zum Zitat J.M.R. Weaver, L.M. Walpita, H.K. Wickramasinghe, Optical absorption microscopy with nanometer resolution. Nature 342, 783–85 (1989) J.M.R. Weaver, L.M. Walpita, H.K. Wickramasinghe, Optical absorption microscopy with nanometer resolution. Nature 342, 783–85 (1989)
61.
Zurück zum Zitat M. Nonnenmacher, H.K. Wickramasinghe, Optical absorption spectroscopy by scanning force microscopy. Ultramicroscopy 42–44, 351–354 (1992) M. Nonnenmacher, H.K. Wickramasinghe, Optical absorption spectroscopy by scanning force microscopy. Ultramicroscopy 42–44, 351–354 (1992)
62.
Zurück zum Zitat A. Majumdar, Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999) A. Majumdar, Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999)
63.
Zurück zum Zitat H.-K. Lyeo, A.A. Khajetoorians, L. Shi et al., Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science 303, 818–820 (2004) H.-K. Lyeo, A.A. Khajetoorians, L. Shi et al., Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science 303, 818–820 (2004)
64.
Zurück zum Zitat Z. Bian, A. Shakouri, L. Shi, H.-K. Lyeo, C.K. Shih, Three-dimensional modeling of nanoscale Seebeck measurement by scanning thermoelectric microscopy. Appl. Phys. Lett. 87, 053115 (2005) Z. Bian, A. Shakouri, L. Shi, H.-K. Lyeo, C.K. Shih, Three-dimensional modeling of nanoscale Seebeck measurement by scanning thermoelectric microscopy. Appl. Phys. Lett. 87, 053115 (2005)
65.
Zurück zum Zitat H.J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 (1992) H.J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 (1992)
66.
Zurück zum Zitat H.J. Mamin, Thermal writing using a heated atomic force microscope tip. Appl. Phys. Lett. 69, 433–435 (1996) H.J. Mamin, Thermal writing using a heated atomic force microscope tip. Appl. Phys. Lett. 69, 433–435 (1996)
67.
Zurück zum Zitat G. Binnig, M. Despont, U. Drechsler et al., Ultrahigh-density atomic force microscopy data storage with erase capability. Appl. Phys. Lett. 74, 1329–1331 (1999) G. Binnig, M. Despont, U. Drechsler et al., Ultrahigh-density atomic force microscopy data storage with erase capability. Appl. Phys. Lett. 74, 1329–1331 (1999)
68.
Zurück zum Zitat W.P. King, T.W. Kenny, K.E. Goodson et al., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001) W.P. King, T.W. Kenny, K.E. Goodson et al., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001)
69.
Zurück zum Zitat U. Dürig, G. Cross, M. Despont, et al. ‘Millipede’—an AFM data storage system at the frontier of nanotechnology. Tribology Lett. 9, 25–32 (2000) U. Dürig, G. Cross, M. Despont, et al. ‘Millipede’—an AFM data storage system at the frontier of nanotechnology. Tribology Lett. 9, 25–32 (2000)
70.
Zurück zum Zitat P. Vettiger, G. Cross, M. Despont et al., The ‘millipede’—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002) P. Vettiger, G. Cross, M. Despont et al., The ‘millipede’—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002)
71.
Zurück zum Zitat P.E. Sheehan, L.J. Whitman, W.P. King, B.A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography. Appl. Phys. Lett. 85, 1589–1591 (2004) P.E. Sheehan, L.J. Whitman, W.P. King, B.A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography. Appl. Phys. Lett. 85, 1589–1591 (2004)
72.
Zurück zum Zitat J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Kablinski, Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004) J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Kablinski, Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)
73.
Zurück zum Zitat J. Buongiorno, D.C. Venerus, N. Prabhat et al., A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106, 094312 (2009) J. Buongiorno,  D.C. Venerus, N. Prabhat et al., A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106, 094312 (2009)
74.
Zurück zum Zitat R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys. 113, 011301 (2013) R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys. 113, 011301 (2013)
76.
Zurück zum Zitat G. Chen, A. Shakouri, Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transfer 124, 242–252 (2002) G. Chen, A. Shakouri, Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transfer 124, 242–252 (2002)
77.
Zurück zum Zitat A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009) A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)
78.
Zurück zum Zitat S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, K.E. Goodson, Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy Rev. 32, 313–327 (2014) S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, K.E. Goodson, Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy Rev. 32, 313–327 (2014)
79.
Zurück zum Zitat H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010) H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)
80.
Zurück zum Zitat M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005) M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005)
81.
Zurück zum Zitat S. Guldin S. Hüttner, M. Kolle et al., Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 10, 2303–2309 (2010) S. Guldin S. Hüttner, M. Kolle et al., Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 10, 2303–2309 (2010)
82.
Zurück zum Zitat M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506–515 (2014) M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506–515 (2014)
83.
Zurück zum Zitat S. Basu, Y.-B. Chen, Z.M. Zhang, Microscale radiation in thermophotovoltaic devices—a review. Intl. J. Ener. Res. 31, 689–716 (2007) S. Basu, Y.-B. Chen, Z.M. Zhang, Microscale radiation in thermophotovoltaic devices—a review. Intl. J. Ener. Res. 31, 689–716 (2007)
84.
Zurück zum Zitat O. Behar, A. Khellaf, K. Mohammedia, A review of studies on central receiver solar thermal power plants. Renew. Sustain. Energy Rev. 23, 12–39 (2013) O. Behar, A. Khellaf, K. Mohammedia, A review of studies on central receiver solar thermal power plants. Renew. Sustain. Energy Rev. 23, 12–39 (2013)
85.
Zurück zum Zitat L.A. Weinstein, J. Loomis, B. Bhatia, D.M. Bierman, E.N. Wang, G. Chen, Concentrated solar power. Chem. Rev. 115, 12797−12838 (2015) L.A. Weinstein, J. Loomis, B. Bhatia, D.M. Bierman, E.N. Wang, G. Chen, Concentrated solar power. Chem. Rev. 115, 12797−12838 (2015)
86.
Zurück zum Zitat H. Wang, V.P. Sivan, A. Mitchell, G. Rosengarten, P.E. Phelan, L.P. Wang, Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 137, 235–242 (2015) H. Wang, V.P. Sivan, A. Mitchell, G. Rosengarten, P.E. Phelan, L.P. Wang, Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 137, 235–242 (2015)
87.
Zurück zum Zitat Y. Li, C. Lin, D. Zhou et al., Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy 64, 103947 (2019) Y. Li, C. Lin, D. Zhou et al., Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy 64, 103947 (2019)
88.
Zurück zum Zitat P.G. Loutzenhiser, A. Meier, A. Steinfeld, Review of the two-step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 3, 4922–4938 (2010) P.G. Loutzenhiser, A. Meier, A. Steinfeld, Review of the two-step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 3, 4922–4938 (2010)
89.
Zurück zum Zitat A.J. Schrader, A.P. Muroyama, P.G. Loutzenhiser, Solar electricity via an air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions: thermodynamic analysis. Sol. Energy 118, 485–495 (2015) A.J. Schrader, A.P. Muroyama, P.G. Loutzenhiser, Solar electricity via an air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions: thermodynamic analysis. Sol. Energy 118, 485–495 (2015)
90.
Zurück zum Zitat A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanović, M. Soljačić, E.N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotech. 9, 126–130 (2014) A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanović, M. Soljačić, E.N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotech. 9, 126–130 (2014)
91.
Zurück zum Zitat D.M. Bierman, A. Lenert, W.R. Chan, B. Bhatia, I. Celanović, M. Soljačić, E.N. Wang, Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1, 16068 (2016) D.M. Bierman, A. Lenert, W.R. Chan, B. Bhatia, I. Celanović, M. Soljačić, E.N. Wang, Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1, 16068 (2016)
92.
Zurück zum Zitat G. Crabtree, M. Dresselhaus, M. Buchanan, The hydrogen economy. Phys. Today, 39–44, December 2004 G. Crabtree, M. Dresselhaus, M. Buchanan, The hydrogen economy. Phys. Today, 39–44, December 2004
93.
Zurück zum Zitat B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001) B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001)
94.
Zurück zum Zitat Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016) Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016)
95.
Zurück zum Zitat S.M. Senn, D. Poulikakos, Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J. Power Sources 130, 178–191 (2004) S.M. Senn, D. Poulikakos, Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J. Power Sources 130, 178–191 (2004)
96.
Zurück zum Zitat T.M. Bandhauer, S. Garimella, T.F. Fuller, A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1–R25 (2011) T.M. Bandhauer, S. Garimella, T.F. Fuller, A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1–R25 (2011)
97.
Zurück zum Zitat R. Kantharaj, A.M. Marconnet, Heat generation and thermal transport in lithium-ion batteries: a scale-bridging perspective. Nanoscale Microscale Thermophys. Eng. 23, 128–156 (2019) R. Kantharaj, A.M. Marconnet, Heat generation and thermal transport in lithium-ion batteries: a scale-bridging perspective. Nanoscale Microscale Thermophys. Eng. 23, 128–156 (2019)
98.
Zurück zum Zitat I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013) I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)
99.
Zurück zum Zitat Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015) Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015)
100.
Zurück zum Zitat A. Lewis, H. Taha, A. Strinkovski et al., Near-field optics: from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21, 1378–1386 (2003) A. Lewis, H. Taha, A. Strinkovski et al., Near-field optics: from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21, 1378–1386 (2003)
101.
Zurück zum Zitat X. Michalet, F.F. Pinaud, L.A. Bentolila et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005) X. Michalet, F.F. Pinaud, L.A. Bentolila et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)
102.
Zurück zum Zitat I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005) I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005)
103.
Zurück zum Zitat B. Yu, M. Meyyappan, Nanotechnology: role in emerging nanoelectronics. Solid-State Electron. 50, 536–544 (2006) B. Yu, M. Meyyappan, Nanotechnology: role in emerging nanoelectronics. Solid-State Electron. 50, 536–544 (2006)
104.
Zurück zum Zitat C. Joachim, J.K. Gimzewski, A. Aviram, Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000) C. Joachim, J.K. Gimzewski, A. Aviram, Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)
105.
Zurück zum Zitat A. Vilan, D. Aswal, D. Cahen, Large-area, ensemble molecular electronics: motivation and challenges. Chem. Rev. 17, 4248–4286 (2017) A. Vilan, D. Aswal, D. Cahen, Large-area, ensemble molecular electronics: motivation and challenges. Chem. Rev. 17, 4248–4286 (2017)
106.
Zurück zum Zitat P. Cheng, S. Choi, Y. Jaluria, D. Q. Li, P. M. Norris, D. Y. Tzou, Special issue on micro/nanoscale heat transfer, Part I. J. Heat Transfer 131, 030301 (2009); Part II, ibid, 131, 040301 (2009) P. Cheng, S. Choi, Y. Jaluria, D. Q. Li, P. M. Norris, D. Y. Tzou, Special issue on micro/nanoscale heat transfer, Part I. J. Heat Transfer 131, 030301 (2009); Part II, ibid, 131, 040301 (2009)
107.
Zurück zum Zitat P. Cheng, Foreword to special issue on micro/nanoscale heat and mass transfer. J. Heat Transfer 134, 050301 (2012) P. Cheng, Foreword to special issue on micro/nanoscale heat and mass transfer. J. Heat Transfer 134, 050301 (2012)
108.
Zurück zum Zitat Z.M. Zhang, P.M. Norris, G.P. Peterson, Foreword to special issue on micro/nanoscale heat and mass transfer. J. Heat Transfer 135, 090501 (2013) Z.M. Zhang, P.M. Norris, G.P. Peterson, Foreword to special issue on micro/nanoscale heat and mass transfer. J. Heat Transfer 135, 090501 (2013)
109.
Zurück zum Zitat L.Q. Wang, Y. Jaluria, Foreword to special issue on advances in micro/nanoscale heat and mass transfer. J. Heat Transfer 137, 090301 (2015) L.Q. Wang, Y. Jaluria, Foreword to special issue on advances in micro/nanoscale heat and mass transfer. J. Heat Transfer 137, 090301 (2015)
110.
Zurück zum Zitat Z.M. Zhang, C. Yang, D.Y. Tzou, Foreword to special issue on micro/nanoscale heat and mass transfer, Part I, J. Heat Transfer 139, 050301 (2017); Part II, ibid, 140, 010301 (2018) Z.M. Zhang, C. Yang, D.Y. Tzou, Foreword to special issue on micro/nanoscale heat and mass transfer, Part I, J. Heat Transfer 139, 050301 (2017); Part II, ibid, 140, 010301 (2018)
111.
Zurück zum Zitat V. Prasad, Y. Jaluria, G. Chen (eds.), Annual Review of Heat Transfer, vol. 14 (Begell House, New York, 2005) V. Prasad, Y. Jaluria, G. Chen (eds.), Annual Review of Heat Transfer, vol. 14 (Begell House, New York, 2005)
Metadaten
Titel
Introduction
verfasst von
Zhuomin M. Zhang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-45039-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.