Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter gives the motivation behind the analysis and simulation methods presented in this thesis and introduces the previous work performed in related topics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bartel A, Pulch R, (2007) A concept for classification of partial differential algebraic equations in nanoelectronics. In: Bonilla LL, Moscoso M, Platero G, Vega JM (eds) Progress in industrial mathematics at ECMI 2006. Mathematics in industry, vol 12. Springer, Berlin Bartel A, Pulch R, (2007) A concept for classification of partial differential algebraic equations in nanoelectronics. In: Bonilla LL, Moscoso M, Platero G, Vega JM (eds) Progress in industrial mathematics at ECMI 2006. Mathematics in industry, vol 12. Springer, Berlin
2.
Zurück zum Zitat Tsukerman IA, Konrad A, Meunier G, Sabonnadiére JC (1993) Coupled field-circuit problems: trends and accomplishments. IEEE Trans Magn 29(2):1701–1704CrossRef Tsukerman IA, Konrad A, Meunier G, Sabonnadiére JC (1993) Coupled field-circuit problems: trends and accomplishments. IEEE Trans Magn 29(2):1701–1704CrossRef
3.
Zurück zum Zitat Schöps S, De Gersem H, Bartel A (2010) A cosimulation framework for multirate time-integration of field/circuit coupled problems. IEEE Trans Magn 46(8):3233–3236CrossRef Schöps S, De Gersem H, Bartel A (2010) A cosimulation framework for multirate time-integration of field/circuit coupled problems. IEEE Trans Magn 46(8):3233–3236CrossRef
4.
Zurück zum Zitat Bortot L, Auchmann B, Cortes Garcia I et al (2018) STEAM: a hierarchical co-simulation framework for superconducting accelerator magnet circuits. IEEE Trans Appl Super 28(3) Bortot L, Auchmann B, Cortes Garcia I et al (2018) STEAM: a hierarchical co-simulation framework for superconducting accelerator magnet circuits. IEEE Trans Appl Super 28(3)
5.
Zurück zum Zitat Dahlerup-Petersen K, Denz R, Gomez-Costa JL et al (1999) The protection system for the superconducting elements of the large hadron collider at CERN. In: Proceedings of the 1999 particle accelerator conference (Cat. No. 99CH36366), vol 5, pp 3200–3202 Dahlerup-Petersen K, Denz R, Gomez-Costa JL et al (1999) The protection system for the superconducting elements of the large hadron collider at CERN. In: Proceedings of the 1999 particle accelerator conference (Cat. No. 99CH36366), vol 5, pp 3200–3202
6.
Zurück zum Zitat Ravaioli E (2015) CLIQ: a new quench protection technology for superconducting magnets. PhD thesis, University of Twente Ravaioli E (2015) CLIQ: a new quench protection technology for superconducting magnets. PhD thesis, University of Twente
7.
Zurück zum Zitat Bortot L, Maciejewski M, Prioli M et al (2016) Simulation of electro-thermal transients in superconducting accelerator magnets with COMSOL multiphysics. In: Proceedings of the European COMSOL conference, Munich, Oct 2016 Bortot L, Maciejewski M, Prioli M et al (2016) Simulation of electro-thermal transients in superconducting accelerator magnets with COMSOL multiphysics. In: Proceedings of the European COMSOL conference, Munich, Oct 2016
8.
Zurück zum Zitat Maciejewski M, Bayrasy P, Wolf K et al (2018) Coupling of magnetothermal and mechanical superconducting magnet models by means of mesh-based interpolation. IEEE Trans Appl Super 28(3) Maciejewski M, Bayrasy P, Wolf K et al (2018) Coupling of magnetothermal and mechanical superconducting magnet models by means of mesh-based interpolation. IEEE Trans Appl Super 28(3)
9.
Zurück zum Zitat Hannalla AY, MacDonald DC (1976) Numerical analysis of transient field problems in electrical machines. Proc Inst Electr Eng 123(9):893–898CrossRef Hannalla AY, MacDonald DC (1976) Numerical analysis of transient field problems in electrical machines. Proc Inst Electr Eng 123(9):893–898CrossRef
10.
Zurück zum Zitat Potter PG, Cambrell GK (1983) A combined finite element and loop analysis for nonlinearly interacting magnetic fields and circuits. IEEE Trans Magn 19(6):2352–2355CrossRef Potter PG, Cambrell GK (1983) A combined finite element and loop analysis for nonlinearly interacting magnetic fields and circuits. IEEE Trans Magn 19(6):2352–2355CrossRef
11.
Zurück zum Zitat Rollins JG, Choma J (1988) Mixed-mode PISCES-SPICE coupled circuit and device solver. IEEE Trans Comput Aided Des Integr Circ Syst 7(8):862–867CrossRef Rollins JG, Choma J (1988) Mixed-mode PISCES-SPICE coupled circuit and device solver. IEEE Trans Comput Aided Des Integr Circ Syst 7(8):862–867CrossRef
12.
Zurück zum Zitat Mayaram K, Pederson DO (1992) Coupling algorithms for mixed-level circuit and device simulation. IEEE Trans Comput Aided Des Integr Circ Syst 11(8):1003–1012CrossRef Mayaram K, Pederson DO (1992) Coupling algorithms for mixed-level circuit and device simulation. IEEE Trans Comput Aided Des Integr Circ Syst 11(8):1003–1012CrossRef
13.
Zurück zum Zitat Grasser K-T, Selberherr S (2000) Mixed-mode device simulation. Microelectron J 31(11):873–881 Grasser K-T, Selberherr S (2000) Mixed-mode device simulation. Microelectron J 31(11):873–881
14.
Zurück zum Zitat Günther M (2000) A joint DAE/PDE model for interconnected electrical networks. Math Model Syst 1(1):000–111MATH Günther M (2000) A joint DAE/PDE model for interconnected electrical networks. Math Model Syst 1(1):000–111MATH
15.
Zurück zum Zitat Costa MC, Nabeta SI, Cardoso JR (2000) Modified nodal analysis applied to electric circuits coupled with FEM in the simulation of a universal motor. IEEE Trans Magn 36(4):1431–1434 Costa MC, Nabeta SI, Cardoso JR (2000) Modified nodal analysis applied to electric circuits coupled with FEM in the simulation of a universal motor. IEEE Trans Magn 36(4):1431–1434
16.
17.
Zurück zum Zitat Estévez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162MATHCrossRef Estévez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162MATHCrossRef
18.
Zurück zum Zitat Nicolet A, Delincé F (1996) Implicit Runge-Kutta methods for transient magnetic field computation. IEEE Trans Magn 32(3):1405–1408CrossRef Nicolet A, Delincé F (1996) Implicit Runge-Kutta methods for transient magnetic field computation. IEEE Trans Magn 32(3):1405–1408CrossRef
19.
Zurück zum Zitat Baumanns S, Clemens M, Schöps S (2013) Structural aspects of regularized full Maxwell electrodynamic potential formulations using FIT. In: Manara G (ed) Proceedings of 2013 URSI international symposium on electromagnetic theory (EMTS). IEEE, pp 1007–1010 Baumanns S, Clemens M, Schöps S (2013) Structural aspects of regularized full Maxwell electrodynamic potential formulations using FIT. In: Manara G (ed) Proceedings of 2013 URSI international symposium on electromagnetic theory (EMTS). IEEE, pp 1007–1010
20.
21.
Zurück zum Zitat Bartel A, Baumanns S, Schöps S (2011) Structural analysis of electrical circuits including magnetoquasistatic devices. APNUM 61:1257–1270MathSciNetMATH Bartel A, Baumanns S, Schöps S (2011) Structural analysis of electrical circuits including magnetoquasistatic devices. APNUM 61:1257–1270MathSciNetMATH
22.
Zurück zum Zitat Alì G, Bartel A, Günther M, Tischendorf C (2003) Elliptic partial differential-algebraic multiphysics models in electrical network design. M3AS 13(9):1261–1278 Alì G, Bartel A, Günther M, Tischendorf C (2003) Elliptic partial differential-algebraic multiphysics models in electrical network design. M3AS 13(9):1261–1278
23.
Zurück zum Zitat Cortes Garcia I, Schöps S, Strohm C, Tischendorf C (2020) Generalized elements for a structual analysis of circuits. Progress in differential-algebraic equations. arXiv:1912.05199, accepted Cortes Garcia I, Schöps S, Strohm C, Tischendorf C (2020) Generalized elements for a structual analysis of circuits. Progress in differential-algebraic equations. arXiv:​1912.​05199, accepted
24.
Zurück zum Zitat Lelarasmee E, Ruehli AE, Sangiovanni-Vincentelli AL (1982) The waveform relaxation method for timedomain analysis of large scale integrated circuits. IEEE Trans Comput Aided Des Integr Circ Syst 1(3):131–145CrossRef Lelarasmee E, Ruehli AE, Sangiovanni-Vincentelli AL (1982) The waveform relaxation method for timedomain analysis of large scale integrated circuits. IEEE Trans Comput Aided Des Integr Circ Syst 1(3):131–145CrossRef
25.
Zurück zum Zitat Burrage K (1995) Parallel and sequential methods for ordinary differential equations. Oxford University Press, OxfordMATH Burrage K (1995) Parallel and sequential methods for ordinary differential equations. Oxford University Press, OxfordMATH
26.
Zurück zum Zitat Jackiewicz Z, Kwapisz M (1996) Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J Numer Anal 33(6):2303–2317MathSciNetMATHCrossRef Jackiewicz Z, Kwapisz M (1996) Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J Numer Anal 33(6):2303–2317MathSciNetMATHCrossRef
27.
28.
Zurück zum Zitat Bartel A, Brunk M, Günther M, Schöps S (2013) Dynamic iteration for coupled problems of electric circuits and distributed devices. SIAM J Sci Comput 35(2):B315–B335MathSciNetMATHCrossRef Bartel A, Brunk M, Günther M, Schöps S (2013) Dynamic iteration for coupled problems of electric circuits and distributed devices. SIAM J Sci Comput 35(2):B315–B335MathSciNetMATHCrossRef
29.
Zurück zum Zitat Bartel A, Brunk M, Schöps S (2014) On the convergence rate of dynamic iteration for coupled problems with multiple subsystems. J Comput Appl Math 262:14–24MathSciNetMATHCrossRef Bartel A, Brunk M, Schöps S (2014) On the convergence rate of dynamic iteration for coupled problems with multiple subsystems. J Comput Appl Math 262:14–24MathSciNetMATHCrossRef
30.
Zurück zum Zitat Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668CrossRef Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668CrossRef
31.
Zurück zum Zitat Zhou P, Lin D, Fu WN, Ionescu B, Cendes ZJ (2006) A general co-simulation approach for coupled field-circuit problems. IEEE Trans Magn 42(4):1051–1054CrossRef Zhou P, Lin D, Fu WN, Ionescu B, Cendes ZJ (2006) A general co-simulation approach for coupled field-circuit problems. IEEE Trans Magn 42(4):1051–1054CrossRef
32.
Zurück zum Zitat Schöps S, De Gersem H, Bartel A (2012) Higher-order cosimulation of field/circuit coupled problems. IEEE Trans Magn 48(2):535–538MATHCrossRef Schöps S, De Gersem H, Bartel A (2012) Higher-order cosimulation of field/circuit coupled problems. IEEE Trans Magn 48(2):535–538MATHCrossRef
34.
36.
Zurück zum Zitat Nataf F (2007) Recent developments on optimized Schwarz methods. In: Widlund OB, Keyes DE (eds) Domain decomposition methods in science and engineering XVI. Springer, Berlin, Heidelberg, pp 115–125CrossRef Nataf F (2007) Recent developments on optimized Schwarz methods. In: Widlund OB, Keyes DE (eds) Domain decomposition methods in science and engineering XVI. Springer, Berlin, Heidelberg, pp 115–125CrossRef
37.
38.
Zurück zum Zitat Al-Khaleel M, Gander MJ, Ruehli AE (2014) Optimization of transmission conditions in waveform relaxation techniques for RC circuits. SIAM J Numer Anal 52(2):1076–1101MathSciNetMATHCrossRef Al-Khaleel M, Gander MJ, Ruehli AE (2014) Optimization of transmission conditions in waveform relaxation techniques for RC circuits. SIAM J Numer Anal 52(2):1076–1101MathSciNetMATHCrossRef
39.
Zurück zum Zitat Nshimiyimana JdD, Plumier F, Dular P, Geuzaine C (2016) Co-simulation of of finite element and circuit solvers using optimized waveform relaxation. In: IEEE international energy conference (ENERGYCON), pp 1–6 Nshimiyimana JdD, Plumier F, Dular P, Geuzaine C (2016) Co-simulation of of finite element and circuit solvers using optimized waveform relaxation. In: IEEE international energy conference (ENERGYCON), pp 1–6
41.
Zurück zum Zitat Lions J-L, Maday Y, Turinici G (2001) A parareal in time discretization of PDEs. Comptes Rendus Acad Sci Ser I: Math 332(7):661–668MathSciNetMATH Lions J-L, Maday Y, Turinici G (2001) A parareal in time discretization of PDEs. Comptes Rendus Acad Sci Ser I: Math 332(7):661–668MathSciNetMATH
42.
Zurück zum Zitat Gander MJ, Vandewalle S (2007) On the superlinear and linear convergence of the parareal algorithm. In: Domain decomposition methods in science and engineering XVI. Lecture notes in computational science and engineering, vol 55. Springer, Berlin, pp 291–298 Gander MJ, Vandewalle S (2007) On the superlinear and linear convergence of the parareal algorithm. In: Domain decomposition methods in science and engineering XVI. Lecture notes in computational science and engineering, vol 55. Springer, Berlin, pp 291–298
44.
Zurück zum Zitat Gander MJ, Hairer E (2008) Nonlinear convergence analysis for the parareal algorithm. In: Langer U, Discacciati M, Keyes DE, Widlund OB, Zulehner W (eds) Domain decomposition methods in science and engineering XVII. Springer, Berlin, Heidelberg, pp 45–56CrossRef Gander MJ, Hairer E (2008) Nonlinear convergence analysis for the parareal algorithm. In: Langer U, Discacciati M, Keyes DE, Widlund OB, Zulehner W (eds) Domain decomposition methods in science and engineering XVII. Springer, Berlin, Heidelberg, pp 45–56CrossRef
45.
Zurück zum Zitat Lamour R (1994) A shooting method for fully implicit index-2 differential-algebraic equations. Humboldt Universität Berlin Lamour R (1994) A shooting method for fully implicit index-2 differential-algebraic equations. Humboldt Universität Berlin
46.
Zurück zum Zitat Lamour R (1997) A shooting method for fully implicit index-2 differential algebraic equations. SIAM J Sci Comput 18(1):94–114MathSciNetMATHCrossRef Lamour R (1997) A shooting method for fully implicit index-2 differential algebraic equations. SIAM J Sci Comput 18(1):94–114MathSciNetMATHCrossRef
47.
Zurück zum Zitat Cadeau T, Magoules F (2011) Coupling the parareal algorithm with the waveform relaxation method for the solution of differential algebraic equations. In: 10th international symposium on distributed computing and applications to business, engineering and science, pp 15–19 Cadeau T, Magoules F (2011) Coupling the parareal algorithm with the waveform relaxation method for the solution of differential algebraic equations. In: 10th international symposium on distributed computing and applications to business, engineering and science, pp 15–19
48.
Zurück zum Zitat Schöps S, Niyonzima I, Clemens M (2018) Parallel-in-time simulation of eddy current problems using parareal. IEEE Trans Magn 54(3):1–4. arXiv:1706.05750 Schöps S, Niyonzima I, Clemens M (2018) Parallel-in-time simulation of eddy current problems using parareal. IEEE Trans Magn 54(3):1–4. arXiv:​1706.​05750
49.
Zurück zum Zitat Gander MJ, Kulchytska-Ruchka I, Niyonzima I, Schöps S (2019) A new parareal algorithm for problems with discontinuous sources. SIAM J Sci Comput 41(2):B375–B395. arXiv:1803.05503 Gander MJ, Kulchytska-Ruchka I, Niyonzima I, Schöps S (2019) A new parareal algorithm for problems with discontinuous sources. SIAM J Sci Comput 41(2):B375–B395. arXiv:​1803.​05503
50.
Zurück zum Zitat Bast D, Kulchytska-Ruchka I, Schöps S, Rain O (2020) Accelerated steady-state torque computation for induction machines using parallel-in-time algorithms. IEEE Trans Magn 56(2):1–9CrossRef Bast D, Kulchytska-Ruchka I, Schöps S, Rain O (2020) Accelerated steady-state torque computation for induction machines using parallel-in-time algorithms. IEEE Trans Magn 56(2):1–9CrossRef
52.
Zurück zum Zitat Gander MJ, Jiang Y-L, Li R-J (2013) Parareal Schwarz waveform relaxation methods. In: Xu J, Widlund OB, Holst M (eds) Domain decomposition methods in science and engineering XX. Springer, Berlin, Heidelberg, pp 451–458CrossRef Gander MJ, Jiang Y-L, Li R-J (2013) Parareal Schwarz waveform relaxation methods. In: Xu J, Widlund OB, Holst M (eds) Domain decomposition methods in science and engineering XX. Springer, Berlin, Heidelberg, pp 451–458CrossRef
53.
Zurück zum Zitat Gander MJ (2015) 50 years of time parallel time integration. In: Carraro T, Geiger M, Körkel S, Rannacher R (eds) Multiple shooting and time domain decomposition methods. Contributions in mathematical and computational sciences, vol 9. Springer, Berlin, Heidelberg, pp 69–113 Gander MJ (2015) 50 years of time parallel time integration. In: Carraro T, Geiger M, Körkel S, Rannacher R (eds) Multiple shooting and time domain decomposition methods. Contributions in mathematical and computational sciences, vol 9. Springer, Berlin, Heidelberg, pp 69–113
54.
Zurück zum Zitat Cortes Garcia I, De Gersem H, Schöps S (2019) A structural analysis of field/circuit coupled problems based on a generalised circuit element. Numer Algorithm 83:373–394. arXiv:1801.07081 Cortes Garcia I, De Gersem H, Schöps S (2019) A structural analysis of field/circuit coupled problems based on a generalised circuit element. Numer Algorithm 83:373–394. arXiv:​1801.​07081
55.
Zurück zum Zitat Cortes Garcia I, Schöps S, Bortot L et al (2017) Optimized field/circuit coupling for the simulation of quenches in superconducting magnets. IEEE J Multiscale Multiphys Comput Tech 2(1):97–104. arXiv:1702.00958 Cortes Garcia I, Schöps S, Bortot L et al (2017) Optimized field/circuit coupling for the simulation of quenches in superconducting magnets. IEEE J Multiscale Multiphys Comput Tech 2(1):97–104. arXiv:​1702.​00958
56.
Zurück zum Zitat Cortes Garcia I, Kulchytska-Ruchka I, Schöps S (2020) Efficient simulation of field/circuit coupled systems with parallelized waveform relaxation. IEEE Trans Magn 56(2):1–4CrossRef Cortes Garcia I, Kulchytska-Ruchka I, Schöps S (2020) Efficient simulation of field/circuit coupled systems with parallelized waveform relaxation. IEEE Trans Magn 56(2):1–4CrossRef
Metadaten
Titel
Introduction
verfasst von
Idoia Cortes Garcia
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-63273-1_1

Neuer Inhalt