Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Modelling

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The different physical phenomena that are relevant through this work are described by either space and time dependent partial differential equations or only time dependent differential algebraic equations. This chapter presents the different systems of equations that are required in this work, as well as the quantities that are involved. This includes the partial differential equations required for the description of electromagnetic fields, i.e. Maxwell’s equations and their different approximations, as well as the heat propagation. Furthermore, the system of differential equations for circuit simulation (modified nodal analysis) is derived and introduced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cortes Garcia I, Schöps S, De Gersem H, Baumanns S (2019) Systems of differential algebraic equations in computational electromagnetics. In: Campbell Stephenand Ilchmann A, Mehrmann V, Reis T (eds) Applications of differential-algebraic equations: examples and benchmarks. Differential-algebraic equations forum. Springer, Heidelberg, pp 123–169 Cortes Garcia I, Schöps S, De Gersem H, Baumanns S (2019) Systems of differential algebraic equations in computational electromagnetics. In: Campbell Stephenand Ilchmann A, Mehrmann V, Reis T (eds) Applications of differential-algebraic equations: examples and benchmarks. Differential-algebraic equations forum. Springer, Heidelberg, pp 123–169
2.
Zurück zum Zitat Cortes Garcia I, De Gersem H, Schöps S (2019) A structural analysis of field/circuit coupled problems based on a generalised circuit element. Numer Algorithm 83:373–394. arXiv: 1801.07081 Cortes Garcia I, De Gersem H, Schöps S (2019) A structural analysis of field/circuit coupled problems based on a generalised circuit element. Numer Algorithm 83:373–394. arXiv:​ 1801.​07081
3.
Zurück zum Zitat Maxwell JC (1864) A dynamical theory of the electromagnetic field. Royal Soc Trans CLV 459–512 Maxwell JC (1864) A dynamical theory of the electromagnetic field. Royal Soc Trans CLV 459–512
4.
Zurück zum Zitat Jackson JD (1998) Classical electrodynamics, 3rd ed. Wiley, New York Jackson JD (1998) Classical electrodynamics, 3rd ed. Wiley, New York
5.
Zurück zum Zitat Griffiths DF (1999) Introduction to electrodynamics. Prentice-Hall, Upper Saddle River, NJ, USA Griffiths DF (1999) Introduction to electrodynamics. Prentice-Hall, Upper Saddle River, NJ, USA
6.
Zurück zum Zitat Hiptmair R (2015) Maxwell’s equations: continuous and discrete. In: Bermúdez de Castro A, Valli A (eds) Computational electromagnetism: Cetraro, Italy. Springer International Publishing, Cham, pp 1–58 Hiptmair R (2015) Maxwell’s equations: continuous and discrete. In: Bermúdez de Castro A, Valli A (eds) Computational electromagnetism: Cetraro, Italy. Springer International Publishing, Cham, pp 1–58
7.
Zurück zum Zitat Assous F, Ciarlet P, Labrunie S (2018) Mathematical foundations of computational electromagnetism. Springer Assous F, Ciarlet P, Labrunie S (2018) Mathematical foundations of computational electromagnetism. Springer
8.
Zurück zum Zitat Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic Press, San Diego Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic Press, San Diego
9.
Zurück zum Zitat Bortot L, Auchmann B, Maciejewski M et al (2018) A 2-d finite-element model for electrothermal transients in accelerator magnets. IEEE Trans Magn 54(3):1–4. arXiv: 1710.01187 Bortot L, Auchmann B, Maciejewski M et al (2018) A 2-d finite-element model for electrothermal transients in accelerator magnets. IEEE Trans Magn 54(3):1–4. arXiv:​ 1710.​01187
10.
Zurück zum Zitat Cortes Garcia I, Schöps S, Bortot L et al (2017) Optimized field/circuit coupling for the simulation of quenches in superconducting magnets. IEEE J Multiscale Multiphys Comput Tech 2(1):97–104. arXiv: 1702.00958 Cortes Garcia I, Schöps S, Bortot L et al (2017) Optimized field/circuit coupling for the simulation of quenches in superconducting magnets. IEEE J Multiscale Multiphys Comput Tech 2(1):97–104. arXiv:​ 1702.​00958
11.
Zurück zum Zitat Schöps S, De Gersem H, Weiland T (2013) Winding functions in transient magnetoquasistatic field-circuit coupled simulations. COMPEL 32(6):2063–2083MathSciNetMATHCrossRef Schöps S, De Gersem H, Weiland T (2013) Winding functions in transient magnetoquasistatic field-circuit coupled simulations. COMPEL 32(6):2063–2083MathSciNetMATHCrossRef
12.
Zurück zum Zitat De Gersem H, Munteanu I, Weiland T (2008) Construction of differential material matrices for the orthogonal finite-integration technique with nonlinear materials. IEEE Trans Magn 44(6):710–713CrossRef De Gersem H, Munteanu I, Weiland T (2008) Construction of differential material matrices for the orthogonal finite-integration technique with nonlinear materials. IEEE Trans Magn 44(6):710–713CrossRef
13.
14.
Zurück zum Zitat C Pechstein (2004) Multigrid-Newton-methods for nonlinear-magnetostatic problems. Master’s thesis, Universität Linz, Linz, Austria C Pechstein (2004) Multigrid-Newton-methods for nonlinear-magnetostatic problems. Master’s thesis, Universität Linz, Linz, Austria
15.
Zurück zum Zitat Römer U (2015) Numerical approximation of the magnetoquasistatic model with uncertainties and its application to magnet design. Dissertation, Technische Universität Darmstadt Römer U (2015) Numerical approximation of the magnetoquasistatic model with uncertainties and its application to magnet design. Dissertation, Technische Universität Darmstadt
16.
Zurück zum Zitat Späck-Leigsnering Y, Ruppert MG, Gjonaj E, De Gersem H, Hinrichsen V (2019) Thermal instability analysis of station class arresters based on electrothermal finite element simulation. In: 20th proceedings of the international symposium on high voltage engineering (ISH), Budapest Späck-Leigsnering Y, Ruppert MG, Gjonaj E, De Gersem H, Hinrichsen V (2019) Thermal instability analysis of station class arresters based on electrothermal finite element simulation. In: 20th proceedings of the international symposium on high voltage engineering (ISH), Budapest
17.
Zurück zum Zitat Henrotte F, Meys B, Hedia H, Dular P, Legros W (1999) Finite element modelling with transformation techniques. IEEE Trans Magn 35(3):1434–1437CrossRef Henrotte F, Meys B, Hedia H, Dular P, Legros W (1999) Finite element modelling with transformation techniques. IEEE Trans Magn 35(3):1434–1437CrossRef
18.
Zurück zum Zitat Dirks HK (1996) Quasi-stationary fields for microelectronic applications. Electr Eng 79(2):145–155CrossRef Dirks HK (1996) Quasi-stationary fields for microelectronic applications. Electr Eng 79(2):145–155CrossRef
19.
Zurück zum Zitat Haus HA, Melcher JR (1989) Electromagnetic fields and energy. Prentice-Hall Haus HA, Melcher JR (1989) Electromagnetic fields and energy. Prentice-Hall
20.
Zurück zum Zitat Schmidt K, Sterz O, Hiptmair R (2008) Estimating the eddy-current modeling error. IEEE Trans Magn 44(6):686–689 Schmidt K, Sterz O, Hiptmair R (2008) Estimating the eddy-current modeling error. IEEE Trans Magn 44(6):686–689
21.
Zurück zum Zitat Steinmetz T, Kurz S, Clemens M (2011) Domains of validity of quasistatic and quasistationary field approximations. COMPEL 30(4):1237–1247MathSciNetMATHCrossRef Steinmetz T, Kurz S, Clemens M (2011) Domains of validity of quasistatic and quasistationary field approximations. COMPEL 30(4):1237–1247MathSciNetMATHCrossRef
22.
Zurück zum Zitat Larsson J (2007) Electromagnetics from a quasistatic perspective. Am J Phys 75(3):230–239CrossRef Larsson J (2007) Electromagnetics from a quasistatic perspective. Am J Phys 75(3):230–239CrossRef
23.
Zurück zum Zitat Koch S, Weiland T (2011) Different types of quasistationary formulations for time domain simulations. Radio Sci 46(5) Koch S, Weiland T (2011) Different types of quasistationary formulations for time domain simulations. Radio Sci 46(5)
24.
Zurück zum Zitat Baumanns S, Clemens M, and Schöps S (2013) Structural aspects of regularized full Maxwell electrodynamic potential formulations using FIT. In: Manara G (ed) Proceedings of 2013 URSI international symposium on electromagnetic theory (EMTS). IEEE, pp 1007–1010 Baumanns S, Clemens M, and Schöps S (2013) Structural aspects of regularized full Maxwell electrodynamic potential formulations using FIT. In: Manara G (ed) Proceedings of 2013 URSI international symposium on electromagnetic theory (EMTS). IEEE, pp 1007–1010
25.
Zurück zum Zitat Merkel M, Niyonzima I, Schöps S (2017) Paraexp using leapfrog as integrator for high-frequency electromagnetic simulations. Radio Sci 52(12):1558–1569. arXiv: 1705.08019 Merkel M, Niyonzima I, Schöps S (2017) Paraexp using leapfrog as integrator for high-frequency electromagnetic simulations. Radio Sci 52(12):1558–1569. arXiv:​ 1705.​08019
26.
Zurück zum Zitat Kameari A (1990) Calculation of transient 3D eddy-current using edge elements. IEEE Trans Magn 26(5):466–469CrossRef Kameari A (1990) Calculation of transient 3D eddy-current using edge elements. IEEE Trans Magn 26(5):466–469CrossRef
27.
Zurück zum Zitat Bíró O, Preis K (1989) On the use of the magnetic vector potential in the finite-element analysis of threedimensional eddy currents. IEEE Trans Magn 25(4):3145–3159CrossRef Bíró O, Preis K (1989) On the use of the magnetic vector potential in the finite-element analysis of threedimensional eddy currents. IEEE Trans Magn 25(4):3145–3159CrossRef
28.
Zurück zum Zitat Manges JB, Cendes ZJ (1997) Tree-cotree decompositions for first-order complete tangential vector finite elements. Int J Numer Meth Eng 40(9):1667–1685MathSciNetCrossRef Manges JB, Cendes ZJ (1997) Tree-cotree decompositions for first-order complete tangential vector finite elements. Int J Numer Meth Eng 40(9):1667–1685MathSciNetCrossRef
29.
Zurück zum Zitat Clemens M, Weiland T (2002) Regularization of eddy-current formulations using discrete grad-div operators. IEEE Trans Magn 38(2):569–572CrossRef Clemens M, Weiland T (2002) Regularization of eddy-current formulations using discrete grad-div operators. IEEE Trans Magn 38(2):569–572CrossRef
30.
Zurück zum Zitat Chen Q, Schoenmaker W, Meuris P, Wong N (2011) An effective formulation of coupled electromagnetic: TCAD simulation for extremely high frequency onward. IEEE Trans Circ Syst 30(6):866–876 Chen Q, Schoenmaker W, Meuris P, Wong N (2011) An effective formulation of coupled electromagnetic: TCAD simulation for extremely high frequency onward. IEEE Trans Circ Syst 30(6):866–876
31.
Zurück zum Zitat Emson CRI, Trowbridge CW (1988) Transient 3d eddy currents using modified magnetic vector potentials and magnetic scalar potentials. IEEE Trans Magn 24(1):86–89CrossRef Emson CRI, Trowbridge CW (1988) Transient 3d eddy currents using modified magnetic vector potentials and magnetic scalar potentials. IEEE Trans Magn 24(1):86–89CrossRef
32.
Zurück zum Zitat Carpenter CJ (1980) Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies. IEE Proc B Electric Power Appl 127(5):332CrossRef Carpenter CJ (1980) Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies. IEE Proc B Electric Power Appl 127(5):332CrossRef
33.
Zurück zum Zitat Webb JP, Forghani B (1993) The low-frequency performance of \(h-\phi \) and \(t-\omega \) methods using edge elements for 3d eddy current problems. IEEE Trans Magn 29(6):2461–2463 Webb JP, Forghani B (1993) The low-frequency performance of \(h-\phi \) and \(t-\omega \) methods using edge elements for 3d eddy current problems. IEEE Trans Magn 29(6):2461–2463
34.
Zurück zum Zitat Bíró O, Preis K, Richter KR (1995) Various FEM formulations for the calculation of transient 3d eddy currents in nonlinear media. IEEE Trans Magn 31(3):1307–1312CrossRef Bíró O, Preis K, Richter KR (1995) Various FEM formulations for the calculation of transient 3d eddy currents in nonlinear media. IEEE Trans Magn 31(3):1307–1312CrossRef
35.
Zurück zum Zitat Bossavit A (1991) Differential geometry for the student of numerical methods in electromagnetism. Électricité de France, Technical Report, Aug, p 1991 Bossavit A (1991) Differential geometry for the student of numerical methods in electromagnetism. Électricité de France, Technical Report, Aug, p 1991
36.
Zurück zum Zitat Bossavit A (1999) On the geometry of electromagnetism. ‘Maxwell’s house’. JSAEM 6(4):318–326 Bossavit A (1999) On the geometry of electromagnetism. ‘Maxwell’s house’. JSAEM 6(4):318–326
37.
Zurück zum Zitat Tonti E (1975) On the formal structure of physical theories. Technical Report, Politecnico di Milano, Milano, Italy Tonti E (1975) On the formal structure of physical theories. Technical Report, Politecnico di Milano, Milano, Italy
38.
Zurück zum Zitat Albanese R, Coccorese E, Martone R, Miano G, Rubinacci G (1991) On the numerical solution of the nonlinear three-dimensional eddy current problem. IEEE Trans Magn 27(5):3990–3995CrossRef Albanese R, Coccorese E, Martone R, Miano G, Rubinacci G (1991) On the numerical solution of the nonlinear three-dimensional eddy current problem. IEEE Trans Magn 27(5):3990–3995CrossRef
39.
Zurück zum Zitat Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668CrossRef Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668CrossRef
40.
Zurück zum Zitat De Gersem H, Hameyer K (2001) A finite element model for foil winding simulation. IEEE Trans Magn 37(5):3427–3432CrossRef De Gersem H, Hameyer K (2001) A finite element model for foil winding simulation. IEEE Trans Magn 37(5):3427–3432CrossRef
41.
Zurück zum Zitat Schöps S, Bartel A, De Gersem H, Günther M, (2010) DAE-index and convergence analysis of lumped electric circuits refined by 3-d MQS conductor models. In: Roos J, Costa LRJ (eds) Scientific computing in electrical engineering SCEE 2008. Mathematics in industry, vol 14. Springer, Berlin, pp 341–350 Schöps S, Bartel A, De Gersem H, Günther M, (2010) DAE-index and convergence analysis of lumped electric circuits refined by 3-d MQS conductor models. In: Roos J, Costa LRJ (eds) Scientific computing in electrical engineering SCEE 2008. Mathematics in industry, vol 14. Springer, Berlin, pp 341–350
42.
Zurück zum Zitat Bartel A, Baumanns S, Schöps S (2011) Structural analysis of electrical circuits including magnetoquasistatic devices. APNUM 61:1257–1270MathSciNetMATH Bartel A, Baumanns S, Schöps S (2011) Structural analysis of electrical circuits including magnetoquasistatic devices. APNUM 61:1257–1270MathSciNetMATH
43.
Zurück zum Zitat De Gersem H, Hameyer K, Weiland T (2004) Field-circuit coupled models in electromagnetic simulation. J Comput Appl Math 168(1–2):125–133MathSciNetMATHCrossRef De Gersem H, Hameyer K, Weiland T (2004) Field-circuit coupled models in electromagnetic simulation. J Comput Appl Math 168(1–2):125–133MathSciNetMATHCrossRef
44.
Zurück zum Zitat De Gersem H, Weiland T (2004) Field-circuit coupling for time-harmonic models discretized by the finite integration technique. IEEE Trans Magn 40(2):1334–1337CrossRef De Gersem H, Weiland T (2004) Field-circuit coupling for time-harmonic models discretized by the finite integration technique. IEEE Trans Magn 40(2):1334–1337CrossRef
45.
Zurück zum Zitat Dyck DN, Webb JP (2004) Solenoidal current flows for filamentary conductors. IEEE Trans Magn 40(2):810–813CrossRef Dyck DN, Webb JP (2004) Solenoidal current flows for filamentary conductors. IEEE Trans Magn 40(2):810–813CrossRef
46.
Zurück zum Zitat Zhou P, Badics Z, Lin D, Cendes Z (2008) Nonlinear t-formulation including motion for multiply connected 3-d problems. IEEE Trans Magn 44(6) Zhou P, Badics Z, Lin D, Cendes Z (2008) Nonlinear t-formulation including motion for multiply connected 3-d problems. IEEE Trans Magn 44(6)
47.
Zurück zum Zitat Verweij AP (1995) Electrodynamics of superconducting cables in accelerator magnets. PhD thesis, Universiteit Twente, Twente, The Netherlands Verweij AP (1995) Electrodynamics of superconducting cables in accelerator magnets. PhD thesis, Universiteit Twente, Twente, The Netherlands
48.
Zurück zum Zitat De Gersem H, Weiland T (2004) Finite-element models for superconductive cables with finite inter-wire resistance. IEEE Trans Magn 40(2):667–670CrossRef De Gersem H, Weiland T (2004) Finite-element models for superconductive cables with finite inter-wire resistance. IEEE Trans Magn 40(2):667–670CrossRef
49.
Zurück zum Zitat Bortot L, Maciejewski M, Prioli M et al (2016) Simulation of electro-thermal transients in superconducting accelerator magnets with COMSOL multiphysics. In: Proceedings of the European COMSOL conference 2016, Munich Bortot L, Maciejewski M, Prioli M et al (2016) Simulation of electro-thermal transients in superconducting accelerator magnets with COMSOL multiphysics. In: Proceedings of the European COMSOL conference 2016, Munich
50.
Zurück zum Zitat Nagel LW (1975) SPICE2: a computer program to simulate semiconductor circuits. University of Berkeley, Technical Report Nagel LW (1975) SPICE2: a computer program to simulate semiconductor circuits. University of Berkeley, Technical Report
51.
Zurück zum Zitat Estévez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162MATHCrossRef Estévez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162MATHCrossRef
52.
Zurück zum Zitat Reis T (2014) Mathematical modeling and analysis of nonlinear time-invariant RLC circuits. In: Benner P, Findeisen R, Flockerzi D, Reichl U, Sundmacher K (eds) Large-scale networks in engineering and life sciences. Springer International Publishing, Cham, pp 125–198 Reis T (2014) Mathematical modeling and analysis of nonlinear time-invariant RLC circuits. In: Benner P, Findeisen R, Flockerzi D, Reichl U, Sundmacher K (eds) Large-scale networks in engineering and life sciences. Springer International Publishing, Cham, pp 125–198
53.
Zurück zum Zitat Ho C-W, Ruehli AE, Brennan PA (1975) The modified nodal approach to network analysis. IEEE Trans Circ Syst 22(6):504–509CrossRef Ho C-W, Ruehli AE, Brennan PA (1975) The modified nodal approach to network analysis. IEEE Trans Circ Syst 22(6):504–509CrossRef
54.
Zurück zum Zitat Günther M, Feldmann U, ter Maten EJW (2005) Modelling and discretization of circuit problems. In: Schilders WHA, ter Maten EJW (eds) Numerical methods in electromagnetics. Handbook of numerical analysis, vol 13. Elsevier BV, Amsterdam, Netherlands, pp 523–659 Günther M, Feldmann U, ter Maten EJW (2005) Modelling and discretization of circuit problems. In: Schilders WHA, ter Maten EJW (eds) Numerical methods in electromagnetics. Handbook of numerical analysis, vol 13. Elsevier BV, Amsterdam, Netherlands, pp 523–659
55.
Zurück zum Zitat Tischendorf C (2003) Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Humboldt Universität Berlin, Berlin, Habilitation, p 46 Tischendorf C (2003) Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Humboldt Universität Berlin, Berlin, Habilitation, p 46
Metadaten
Titel
Modelling
verfasst von
Idoia Cortes Garcia
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-63273-1_2

Neuer Inhalt