Skip to main content

2021 | OriginalPaper | Buchkapitel

3. Numerical Methods and Model Analysis

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For real world application set-ups, a closed-form solution of the systems of equations that model the physical phenomena is rare. Therefore, numerical methods are used that yield an approximation of the solution. The systems of differential equations presented in the previous section are both space-dependent boundary value problems as well as time-dependent initial value problems. To approximate the solution of these two types of problems, different numerical techniques are used. This chapter deals with the theoretical fundamentals of both space as well as time integration methods and with important concepts concerning the analysis of the systems of equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Monk P (2003) Finite element methods for Maxwell’s equations. Oxford University Press, OxfordCrossRef Monk P (2003) Finite element methods for Maxwell’s equations. Oxford University Press, OxfordCrossRef
2.
Zurück zum Zitat Weiland T (1977) A discretization method for the solution of Maxwell’s equations for six-component fields. AEÜ 31:116–120 Weiland T (1977) A discretization method for the solution of Maxwell’s equations for six-component fields. AEÜ 31:116–120
3.
Zurück zum Zitat Alotto P, De Cian A, Molinari G (2006) A time-domain 3-D full-Maxwell solver based on the cell method. IEEE Trans Magn 42(4):799–802CrossRef Alotto P, De Cian A, Molinari G (2006) A time-domain 3-D full-Maxwell solver based on the cell method. IEEE Trans Magn 42(4):799–802CrossRef
4.
Zurück zum Zitat Bondeson A, Rylander T, Ingelström P (2005) Computational electromagnetics. Texts in applied mathematics. Springer Bondeson A, Rylander T, Ingelström P (2005) Computational electromagnetics. Texts in applied mathematics. Springer
5.
Zurück zum Zitat Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antenn Propag 14(3):302–307CrossRef Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antenn Propag 14(3):302–307CrossRef
6.
Zurück zum Zitat Cortes Garcia I, Schöps S, De Gersem H, Baumanns S (2019) Systems of differential algebraic equations in computational electromagnetics. In: Campbell Stephenand Ilchmann A, Mehrmann V, Reis T (eds) Applications of differential-algebraic equations: examples and benchmarks. Differential-algebraic equations forum. Springer, Heidelberg, pp 123–169 Cortes Garcia I, Schöps S, De Gersem H, Baumanns S (2019) Systems of differential algebraic equations in computational electromagnetics. In: Campbell Stephenand Ilchmann A, Mehrmann V, Reis T (eds) Applications of differential-algebraic equations: examples and benchmarks. Differential-algebraic equations forum. Springer, Heidelberg, pp 123–169
7.
Zurück zum Zitat Bossavit A (1999) Computational electromagnetism and geometry: building a finite-dimensional ‘Maxwell’s house’. (1): Network equations. JSAEM 7(2):150–159 Bossavit A (1999) Computational electromagnetism and geometry: building a finite-dimensional ‘Maxwell’s house’. (1): Network equations. JSAEM 7(2):150–159
8.
Zurück zum Zitat Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkMATH Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkMATH
9.
Zurück zum Zitat Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic Press, San DiegoMATH Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic Press, San DiegoMATH
10.
Zurück zum Zitat Weiland T (1996) Time domain electromagnetic field computation with finite difference methods. Int J Numer Model Electron Netw Dev Field 9(4):295–319CrossRef Weiland T (1996) Time domain electromagnetic field computation with finite difference methods. Int J Numer Model Electron Netw Dev Field 9(4):295–319CrossRef
11.
Zurück zum Zitat Schöps S (2011) Multiscale modeling and multirate time-integration of field/circuit coupled problems. VDI Verlag. Fortschritt-Berichte VDI, Reihe 21, Dissertation, Bergische Universität Wuppertal & Katholieke Universiteit Leuven, Düsseldorf, Germany, May 2011 Schöps S (2011) Multiscale modeling and multirate time-integration of field/circuit coupled problems. VDI Verlag. Fortschritt-Berichte VDI, Reihe 21, Dissertation, Bergische Universität Wuppertal & Katholieke Universiteit Leuven, Düsseldorf, Germany, May 2011
12.
Zurück zum Zitat Clemens M, Weiland T (2001) Discrete electromagnetism with the finite integration technique. PIER 32:65–87CrossRef Clemens M, Weiland T (2001) Discrete electromagnetism with the finite integration technique. PIER 32:65–87CrossRef
13.
Zurück zum Zitat Casper T, Duque D, Schöps S, De Gersem H (2019) Automated netlist generation for 3D electrothermal and electromagnetic field problems. J Comput Electron 2019. arXiv:1809.08588 Casper T, Duque D, Schöps S, De Gersem H (2019) Automated netlist generation for 3D electrothermal and electromagnetic field problems. J Comput Electron 2019. arXiv:​1809.​08588
14.
Zurück zum Zitat Casper T, De Gersem H, Gillon R et al (2016) Electrothermal simulation of bonding wire degradation under uncertain geometries. In: Fanucci L, Teich J (eds) Proceedings of the 2016 design, automation and test in Europe conference and exhibition (DATE). IEEE, pp 1297–1302. arXiv:1610.04303 Casper T, De Gersem H, Gillon R et al (2016) Electrothermal simulation of bonding wire degradation under uncertain geometries. In: Fanucci L, Teich J (eds) Proceedings of the 2016 design, automation and test in Europe conference and exhibition (DATE). IEEE, pp 1297–1302. arXiv:​1610.​04303
15.
Zurück zum Zitat Alonso Rodríguez A, Valli A (2010) Eddy current approximation of Maxwell equations. Modeling, simulation and applications, vol 4. Springer, Heidelberg Alonso Rodríguez A, Valli A (2010) Eddy current approximation of Maxwell equations. Modeling, simulation and applications, vol 4. Springer, Heidelberg
16.
Zurück zum Zitat Schuhmann R, Weiland T (2001) Conservation of discrete energy and related laws in the finite integration technique. PIER 32:301–316CrossRef Schuhmann R, Weiland T (2001) Conservation of discrete energy and related laws in the finite integration technique. PIER 32:301–316CrossRef
17.
Zurück zum Zitat Baumanns S (2012) Coupled electromagnetic field/circuit simulation: modeling and numerical analysis. Universität zu Köln, Köln PhD thesis Baumanns S (2012) Coupled electromagnetic field/circuit simulation: modeling and numerical analysis. Universität zu Köln, Köln PhD thesis
18.
Zurück zum Zitat Nagel LW (1975) SPICE2: a computer program to simulate semiconductor circuits. University of Berkeley, Technical Report Nagel LW (1975) SPICE2: a computer program to simulate semiconductor circuits. University of Berkeley, Technical Report
19.
Zurück zum Zitat Hairer E, Nørsett SP, Wanner G (2000) Solving ordinary differential equations I: Nonstiff problems, 2nd edn. Computational mathematics. Springer, Berlin, Germany Hairer E, Nørsett SP, Wanner G (2000) Solving ordinary differential equations I: Nonstiff problems, 2nd edn. Computational mathematics. Springer, Berlin, Germany
20.
Zurück zum Zitat Hairer E, Nørsett SP, Wanner G (2002) Solving ordinary differential equations II: Stiff and differential-algebraic problems, 2nd edn. Computational mathematics. Springer, Berlin, Germany Hairer E, Nørsett SP, Wanner G (2002) Solving ordinary differential equations II: Stiff and differential-algebraic problems, 2nd edn. Computational mathematics. Springer, Berlin, Germany
21.
Zurück zum Zitat Mattheij R, Molenaar J (2002) Ordinary differential equations in theory and practice. Society for industrial and applied mathematics, vol 69 Mattheij R, Molenaar J (2002) Ordinary differential equations in theory and practice. Society for industrial and applied mathematics, vol 69
22.
23.
Zurück zum Zitat Brenan KE, Campbell SL, Petzold LR (1995) Numerical solution of initial-value problems in differential-algebraic equations. Society for industrial and applied mathematics, Philadelphia, PA, USA Brenan KE, Campbell SL, Petzold LR (1995) Numerical solution of initial-value problems in differential-algebraic equations. Society for industrial and applied mathematics, Philadelphia, PA, USA
24.
Zurück zum Zitat Lamour R, März R, Tischendorf C (2013) Differential-algebraic equations: a projector based analysis. In: Ilchmann A, Reis T (eds) Differential-algebraic equations forum. Springer, HeidelbergMATH Lamour R, März R, Tischendorf C (2013) Differential-algebraic equations: a projector based analysis. In: Ilchmann A, Reis T (eds) Differential-algebraic equations forum. Springer, HeidelbergMATH
25.
Zurück zum Zitat Deuflhard P (2004) Newton methods for nonlinear problems: affine invariance and adaptive algorithms. Springer, BerlinMATH Deuflhard P (2004) Newton methods for nonlinear problems: affine invariance and adaptive algorithms. Springer, BerlinMATH
27.
28.
Zurück zum Zitat Estévez Schwarz D (2000) Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II Estévez Schwarz D (2000) Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
29.
Zurück zum Zitat Mehrmann V (2015) Index concepts for differential-algebraic equations. In: Engquist B (ed) Encyclopedia of applied and computational mathematics. Springer, Berlin, Heidelberg, pp 676–681CrossRef Mehrmann V (2015) Index concepts for differential-algebraic equations. In: Engquist B (ed) Encyclopedia of applied and computational mathematics. Springer, Berlin, Heidelberg, pp 676–681CrossRef
30.
Zurück zum Zitat Hairer E, Lubich C, Roche M (1989) The numerical solution of differential-algebraic systems by Runge–Kutta methods. Lecture notes in mathematics, vol 70. Springer, Berlin Hairer E, Lubich C, Roche M (1989) The numerical solution of differential-algebraic systems by Runge–Kutta methods. Lecture notes in mathematics, vol 70. Springer, Berlin
Metadaten
Titel
Numerical Methods and Model Analysis
verfasst von
Idoia Cortes Garcia
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-63273-1_3

Neuer Inhalt