Skip to main content

2021 | OriginalPaper | Buchkapitel

4. Structural Analysis of the Coupled Systems

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The time dependent systems of equations obtained in most simulation settings of this work are systems of differential algebraic equations. These systems can be classified according to their index. Systems with higher index require special numerical treatment. Therefore, when dealing with (coupled) systems of differential algebraic equations, a priori knowledge about their index allows to properly handle their simulation. This chapter presents three generalised elements definitions as well as the index analysis of the system of equations arising from circuits (modified nodal analysis) containing the generalised elements. For each one of the definitions, examples arising from different approximations of Maxwell’s equations are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Estévez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162 Estévez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162
2.
Zurück zum Zitat Costa MC, Nabeta SI, Cardoso JR (2000) Modified nodal analysis applied to electric circuits coupled with FEM in the simulation of a universal motor. IEEE Trans Magn 36(4):1431–1434 Costa MC, Nabeta SI, Cardoso JR (2000) Modified nodal analysis applied to electric circuits coupled with FEM in the simulation of a universal motor. IEEE Trans Magn 36(4):1431–1434
3.
Zurück zum Zitat Tsukerman IA, Konrad A, Meunier G, Sabonnadiére JC (1993) Coupled field-circuit problems: trends and accomplishments. IEEE Trans Magn 29(2):1701–1704 Tsukerman IA, Konrad A, Meunier G, Sabonnadiére JC (1993) Coupled field-circuit problems: trends and accomplishments. IEEE Trans Magn 29(2):1701–1704
4.
Zurück zum Zitat Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668 Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668
5.
Zurück zum Zitat Günther M (2000) A joint DAE/PDE model for interconnected electrical networks. Math Model Syst 1(1):000–111 Günther M (2000) A joint DAE/PDE model for interconnected electrical networks. Math Model Syst 1(1):000–111
6.
Zurück zum Zitat Potter PG, Cambrell GK (1983) A combined finite element and loop analysis for nonlinearly interacting magnetic fields and circuits. IEEE Trans Magn 19(6):2352–2355 Potter PG, Cambrell GK (1983) A combined finite element and loop analysis for nonlinearly interacting magnetic fields and circuits. IEEE Trans Magn 19(6):2352–2355
7.
Zurück zum Zitat Bortot L, Auchmann B, Cortes Garcia I et al (2018) STEAM: a hierarchical co-simulation framework for superconducting accelerator magnet circuits. IEEE Trans Appl Super 28(3) Bortot L, Auchmann B, Cortes Garcia I et al (2018) STEAM: a hierarchical co-simulation framework for superconducting accelerator magnet circuits. IEEE Trans Appl Super 28(3)
8.
Zurück zum Zitat Nicolet A, Delincé F (1996) Implicit Runge-Kutta methods for transient magnetic field computation. IEEE Trans Magn 32(3):1405–1408 Nicolet A, Delincé F (1996) Implicit Runge-Kutta methods for transient magnetic field computation. IEEE Trans Magn 32(3):1405–1408
9.
Zurück zum Zitat Tsukerman IA (2002) Finite element differential-algebraic systems for eddy current problems. Numer Algorithm 31(1):319–335 Tsukerman IA (2002) Finite element differential-algebraic systems for eddy current problems. Numer Algorithm 31(1):319–335
10.
Zurück zum Zitat Bartel A, Baumanns S, Schöps S (2011) Structural analysis of electrical circuits including magnetoquasistatic devices. APNUM 61:1257–1270 Bartel A, Baumanns S, Schöps S (2011) Structural analysis of electrical circuits including magnetoquasistatic devices. APNUM 61:1257–1270
11.
Zurück zum Zitat Alí G, Bartel A, Günther M, Tischendorf C (2003) Elliptic partial differential-algebraic multiphysics models in electrical network design. M3AS 13(9):1261–1278 Alí G, Bartel A, Günther M, Tischendorf C (2003) Elliptic partial differential-algebraic multiphysics models in electrical network design. M3AS 13(9):1261–1278
12.
Zurück zum Zitat Baumanns S, Clemens M, Schöps S (2013) Structural aspects of regularized full Maxwell electrodynamic potential formulations using FIT. In: Manara G (ed) Proceedings of 2013 URSI international symposium on electromagnetic theory (EMTS). IEEE, pp 1007–1010 Baumanns S, Clemens M, Schöps S (2013) Structural aspects of regularized full Maxwell electrodynamic potential formulations using FIT. In: Manara G (ed) Proceedings of 2013 URSI international symposium on electromagnetic theory (EMTS). IEEE, pp 1007–1010
13.
Zurück zum Zitat Cortes Garcia I, De Gersem H, Schöps S (2019) A structural analysis of field/circuit coupled problems based on a generalised circuit element. Numer Algorithm 83:373–394. arXiv:1801.07081 Cortes Garcia I, De Gersem H, Schöps S (2019) A structural analysis of field/circuit coupled problems based on a generalised circuit element. Numer Algorithm 83:373–394. arXiv:​1801.​07081
14.
Zurück zum Zitat Cortes Garcia I, Schöps S, Strohm C, Tischendorf C (2020) Generalized elements for a structual analysis of circuits. In: Progress in differential-algebraic equations. arXiv:1912.05199, accepted Cortes Garcia I, Schöps S, Strohm C, Tischendorf C (2020) Generalized elements for a structual analysis of circuits. In: Progress in differential-algebraic equations. arXiv:​1912.​05199, accepted
15.
Zurück zum Zitat Baumanns S, Selva Soto M, Tischendorf C, (2010) Consistent initialization for coupled circuit-device simulation. In: Roos J, Costa LRJ (eds) Scientific computing in electrical engineering SCEE, (2008) Mathematics in industry, vol 14. Springer, Berlin, pp 297–304 Baumanns S, Selva Soto M, Tischendorf C, (2010) Consistent initialization for coupled circuit-device simulation. In: Roos J, Costa LRJ (eds) Scientific computing in electrical engineering SCEE, (2008) Mathematics in industry, vol 14. Springer, Berlin, pp 297–304
16.
Zurück zum Zitat Estévez Schwarz D (2000) Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II Estévez Schwarz D (2000) Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
17.
Zurück zum Zitat Clemens M (2005) Large systems of equations in a discrete electromagnetism: formulations and numerical algorithms. IEE Proc Sci Meas Tech 152(2):50–72 Clemens M (2005) Large systems of equations in a discrete electromagnetism: formulations and numerical algorithms. IEE Proc Sci Meas Tech 152(2):50–72
18.
Zurück zum Zitat Clemens M, Weiland T (2002) Regularization of eddy-current formulations using discrete grad-div operators. IEEE Trans Magn 38(2):569–572 Clemens M, Weiland T (2002) Regularization of eddy-current formulations using discrete grad-div operators. IEEE Trans Magn 38(2):569–572
19.
Zurück zum Zitat Clemens M, Weiland T (1999) Transient eddy-current calculation with the FI-method. IEEE Trans Magn 35(3):1163–1166 Clemens M, Weiland T (1999) Transient eddy-current calculation with the FI-method. IEEE Trans Magn 35(3):1163–1166
20.
Zurück zum Zitat Albanese R, Rubinacci G (1988) Integral formulation for 3d eddy-current computation using edge elements. IEE Proc Sci Meas Tech 135(7):457–462 Albanese R, Rubinacci G (1988) Integral formulation for 3d eddy-current computation using edge elements. IEE Proc Sci Meas Tech 135(7):457–462
21.
Zurück zum Zitat Munteanu I (2002) Tree-cotree condensation properties. ICS Newsletter (International Compumag Society) 9:10–14 Munteanu I (2002) Tree-cotree condensation properties. ICS Newsletter (International Compumag Society) 9:10–14
22.
Zurück zum Zitat Zhou P, Badics Z, Lin D, Cendes Z (2008) Nonlinear t-formulation including motion for multiply connected 3-d problems. IEEE Trans Magn 44(6) Zhou P, Badics Z, Lin D, Cendes Z (2008) Nonlinear t-formulation including motion for multiply connected 3-d problems. IEEE Trans Magn 44(6)
23.
Zurück zum Zitat De Gersem H, Munteanu I, Weiland T (2008) Construction of differential material matrices for the orthogonal finite-integration technique with nonlinear materials. IEEE Trans Magn 44(6):710–713 De Gersem H, Munteanu I, Weiland T (2008) Construction of differential material matrices for the orthogonal finite-integration technique with nonlinear materials. IEEE Trans Magn 44(6):710–713
24.
Zurück zum Zitat Schöps S (2011) Multiscale modeling and multirate time-integration of field/circuit coupled problems. VDI Verlag, Fortschritt-Berichte VDI, Reihe 21, Dissertation, Bergische Universität Wuppertal & Katholieke Universiteit Leuven, Düsseldorf, Germany, May 2011 Schöps S (2011) Multiscale modeling and multirate time-integration of field/circuit coupled problems. VDI Verlag, Fortschritt-Berichte VDI, Reihe 21, Dissertation, Bergische Universität Wuppertal & Katholieke Universiteit Leuven, Düsseldorf, Germany, May 2011
25.
Zurück zum Zitat Römer U (2015) Numerical approximation of the magnetoquasistatic model with uncertainties and its application to magnet design. Dissertation, Technische Universität Darmstadt Römer U (2015) Numerical approximation of the magnetoquasistatic model with uncertainties and its application to magnet design. Dissertation, Technische Universität Darmstadt
26.
Zurück zum Zitat Cortes Garcia I, Schöps S, De Gersem H, Baumanns S (2019) Systems of differential algebraic equations in computational electromagnetics. In: Campbell Stephenand Ilchmann A, Mehrmann V, Reis T (eds) Applications of differential-algebraic equations: examples and benchmarks. Differential-algebraic equations forum. Springer, Heidelberg, pp 123–169 Cortes Garcia I, Schöps S, De Gersem H, Baumanns S (2019) Systems of differential algebraic equations in computational electromagnetics. In: Campbell Stephenand Ilchmann A, Mehrmann V, Reis T (eds) Applications of differential-algebraic equations: examples and benchmarks. Differential-algebraic equations forum. Springer, Heidelberg, pp 123–169
Metadaten
Titel
Structural Analysis of the Coupled Systems
verfasst von
Idoia Cortes Garcia
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-63273-1_4

Neuer Inhalt