Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Shuiwen Shen, Qiong-zhong Chen

Erschienen in: Practical Control of Electric Machines for EV/HEVs

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Driven by the environmental concerns, it is now commonly acknowledged that conventional fossil fuel-powered vehicles will gradually phase out and be vastly replaced by electrified vehicles. In order to boost this transition, many countries have strengthened their policy support covering from the development of hybrid electric vehicles (HEVs) and pure electric vehicles (EVs) down to their deployment into the market. This has become an ongoing profound revolution in the car industry, not only because of the transition of technologies and the reshuffling of the downstream powertrain supply chains, but also due to many more niche competitors joining this race. It can be predicted that the future of the car industry will be very much reshaped in the coming dozens of years if not shorter. In this chapter, commercial candidates of HEV/EV traction motors are reviewed. Selection criteria of motor drive technologies for automotive applications are summarized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is also referred to as alignment torque.
 
Literatur
1.
Zurück zum Zitat Agamloh E, Von Jouanne A, Yokochi A (2020) An overview of electric machine trends in modern electric vehicles. Machines 8(2):20CrossRef Agamloh E, Von Jouanne A, Yokochi A (2020) An overview of electric machine trends in modern electric vehicles. Machines 8(2):20CrossRef
2.
Zurück zum Zitat Bianchi N, Bolognani S, Bon D, Dai Pre M (2009) Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and pm-assisted synchronous reluctance motors. IEEE Trans Ind Appl 45(3):921–928CrossRef Bianchi N, Bolognani S, Bon D, Dai Pre M (2009) Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and pm-assisted synchronous reluctance motors. IEEE Trans Ind Appl 45(3):921–928CrossRef
3.
Zurück zum Zitat Bibra EM, Connelly E, Dhir S, Drtil M, Henriot P, Hwang I, Le Marois JB, McBain S, Paoli L, Teter J (2022) Global ev outlook 2022: securing supplies for an electric future Bibra EM, Connelly E, Dhir S, Drtil M, Henriot P, Hwang I, Le Marois JB, McBain S, Paoli L, Teter J (2022) Global ev outlook 2022: securing supplies for an electric future
4.
Zurück zum Zitat Bose BK et al (2002) Modern power electronics and AC drives, vol 123. Prentice hall, Upper Saddle River, NJ Bose BK et al (2002) Modern power electronics and AC drives, vol 123. Prentice hall, Upper Saddle River, NJ
5.
Zurück zum Zitat Burwell M, Carosa P, Kirtley J, Rippel W, Sanner J, Seger D (2014) Improving the high speed efficiency of xev induction motors Burwell M, Carosa P, Kirtley J, Rippel W, Sanner J, Seger D (2014) Improving the high speed efficiency of xev induction motors
6.
Zurück zum Zitat Callegaro AD, Bilgin B, Emadi A (2019) Radial force shaping for acoustic noise reduction in switched reluctance machines. IEEE Trans Power Electron 34(10):9866–9878CrossRef Callegaro AD, Bilgin B, Emadi A (2019) Radial force shaping for acoustic noise reduction in switched reluctance machines. IEEE Trans Power Electron 34(10):9866–9878CrossRef
7.
Zurück zum Zitat Credo A, Fabri G, Villani M, Popescu M (2020) Adopting the topology optimization in the design of high-speed synchronous reluctance motors for electric vehicles. IEEE Trans Ind Appl 56(5):5429–5438CrossRef Credo A, Fabri G, Villani M, Popescu M (2020) Adopting the topology optimization in the design of high-speed synchronous reluctance motors for electric vehicles. IEEE Trans Ind Appl 56(5):5429–5438CrossRef
8.
Zurück zum Zitat De Santiago J, Bernhoff H, Ekergård B, Eriksson S, Ferhatovic S, Waters R, Leijon M (2011) Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Trans Veh Technol 61(2):475–484CrossRef De Santiago J, Bernhoff H, Ekergård B, Eriksson S, Ferhatovic S, Waters R, Leijon M (2011) Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Trans Veh Technol 61(2):475–484CrossRef
9.
Zurück zum Zitat Dos Santos FL, Anthonis J, Naclerio F, Gyselinck JJ, Van der Auweraer H, Góes LC (2013) Multiphysics NVH modeling: Simulation of a switched reluctance motor for an electric vehicle. IEEE Trans Ind Electron 61(1):469–476CrossRef Dos Santos FL, Anthonis J, Naclerio F, Gyselinck JJ, Van der Auweraer H, Góes LC (2013) Multiphysics NVH modeling: Simulation of a switched reluctance motor for an electric vehicle. IEEE Trans Ind Electron 61(1):469–476CrossRef
10.
Zurück zum Zitat Dubois A, Van Der Geest M, Bevirt J, Christie R, Borer NK, Clarke SC (2016) Design of an electric propulsion system for sceptor’s outboard nacelle. In: 16th AIAA aviation technology, integration, and operations conference, p 3925 Dubois A, Van Der Geest M, Bevirt J, Christie R, Borer NK, Clarke SC (2016) Design of an electric propulsion system for sceptor’s outboard nacelle. In: 16th AIAA aviation technology, integration, and operations conference, p 3925
12.
Zurück zum Zitat Fratta A, Troglia G, Vagati A, Villata F (1993) Evaluation of torque ripple in high performance synchronous reluctance machines. In: Conference record of the 1993 IEEE industry applications conference twenty-eighth IAS annual meeting. IEEE, pp 163–170 Fratta A, Troglia G, Vagati A, Villata F (1993) Evaluation of torque ripple in high performance synchronous reluctance machines. In: Conference record of the 1993 IEEE industry applications conference twenty-eighth IAS annual meeting. IEEE, pp 163–170
13.
Zurück zum Zitat Gan C, Wu J, Sun Q, Kong W, Li H, Hu Y (2018) A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications. IEEE Access 6:31,430–31,443 Gan C, Wu J, Sun Q, Kong W, Li H, Hu Y (2018) A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications. IEEE Access 6:31,430–31,443
14.
Zurück zum Zitat Goss J (2019) Performance analysis of electric motor technologies for an electric vehicle powertrain. Wrexham, UK, Motor Design Ltd, White Paper Goss J (2019) Performance analysis of electric motor technologies for an electric vehicle powertrain. Wrexham, UK, Motor Design Ltd, White Paper
15.
Zurück zum Zitat Gundogdu T, Zhu ZQ, Chan CC (2022) Comparative study of permanent magnet, conventional, and advanced induction machines for traction applications. World Electric Veh J 13(8):137CrossRef Gundogdu T, Zhu ZQ, Chan CC (2022) Comparative study of permanent magnet, conventional, and advanced induction machines for traction applications. World Electric Veh J 13(8):137CrossRef
16.
Zurück zum Zitat Han S, Diao K, Sun X (2021) Overview of multi-phase switched reluctance motor drives for electric vehicles. Adv Mech Eng 13(9):16878140211045,195 Han S, Diao K, Sun X (2021) Overview of multi-phase switched reluctance motor drives for electric vehicles. Adv Mech Eng 13(9):16878140211045,195
17.
Zurück zum Zitat He T, Zhu Z, Eastham F, Wang Y, Bin H, Wu D, Gong L, Chen J (2022) Permanent magnet machines for high-speed applications. World Electric Veh J 13(1):18CrossRef He T, Zhu Z, Eastham F, Wang Y, Bin H, Wu D, Gong L, Chen J (2022) Permanent magnet machines for high-speed applications. World Electric Veh J 13(1):18CrossRef
18.
Zurück zum Zitat Heidari H, Rassõlkin A, Kallaste A, Vaimann T, Andriushchenko E, Belahcen A, Lukichev DV (2021) A review of synchronous reluctance motor-drive advancements. Sustainability 13(2):729CrossRef Heidari H, Rassõlkin A, Kallaste A, Vaimann T, Andriushchenko E, Belahcen A, Lukichev DV (2021) A review of synchronous reluctance motor-drive advancements. Sustainability 13(2):729CrossRef
19.
Zurück zum Zitat Hofmann A, Al-Dajani A, Bösing M, De Doncker RW (2013) Direct instantaneous force control: A method to eliminate mode-0-borne noise in switched reluctance machines. In: 2013 international electric machines & drives conference. IEEE, pp 1009–1016 Hofmann A, Al-Dajani A, Bösing M, De Doncker RW (2013) Direct instantaneous force control: A method to eliminate mode-0-borne noise in switched reluctance machines. In: 2013 international electric machines & drives conference. IEEE, pp 1009–1016
20.
Zurück zum Zitat Houache MS, Yim CH, Karkar Z, Abu-Lebdeh Y (2022) On the current and future outlook of battery chemistries for electric vehicles-mini review. Batteries 8(7):70CrossRef Houache MS, Yim CH, Karkar Z, Abu-Lebdeh Y (2022) On the current and future outlook of battery chemistries for electric vehicles-mini review. Batteries 8(7):70CrossRef
21.
Zurück zum Zitat Hwang D, Gu BG (2020) Field current control strategy for wound-rotor synchronous motors considering coupled stator flux linkage. IEEE Access 8:111,811–111,821 Hwang D, Gu BG (2020) Field current control strategy for wound-rotor synchronous motors considering coupled stator flux linkage. IEEE Access 8:111,811–111,821
22.
Zurück zum Zitat Kim H, Park Y, Liu HC, Han PW, Lee J (2020) Study on line-start permanent magnet assistance synchronous reluctance motor for improving efficiency and power factor. Energies 13(2):384CrossRef Kim H, Park Y, Liu HC, Han PW, Lee J (2020) Study on line-start permanent magnet assistance synchronous reluctance motor for improving efficiency and power factor. Energies 13(2):384CrossRef
23.
Zurück zum Zitat Kiyota K, Kakishima T, Chiba A (2014) Comparison of test result and design stage prediction of switched reluctance motor competitive with 60-kw rare-earth pm motor. IEEE Trans Ind Electron 61(10):5712–5721CrossRef Kiyota K, Kakishima T, Chiba A (2014) Comparison of test result and design stage prediction of switched reluctance motor competitive with 60-kw rare-earth pm motor. IEEE Trans Ind Electron 61(10):5712–5721CrossRef
24.
Zurück zum Zitat Krishnan R (2017) Switched reluctance motor drives: modeling, simulation, analysis, design, and applications. CRC PressCrossRef Krishnan R (2017) Switched reluctance motor drives: modeling, simulation, analysis, design, and applications. CRC PressCrossRef
25.
Zurück zum Zitat Lee CH, Hua W, Long T, Jiang C, Iyer LV (2021) A critical review of emerging technologies for electric and hybrid vehicles. IEEE Open J Veh Technol 2:471–485CrossRef Lee CH, Hua W, Long T, Jiang C, Iyer LV (2021) A critical review of emerging technologies for electric and hybrid vehicles. IEEE Open J Veh Technol 2:471–485CrossRef
26.
Zurück zum Zitat Ludois DC, Brown I (2017) Brushless and permanent magnet free wound field synchronous motors for ev traction. Tech. rep., Univ. of Wisconsin, Madison, WI (United States) Ludois DC, Brown I (2017) Brushless and permanent magnet free wound field synchronous motors for ev traction. Tech. rep., Univ. of Wisconsin, Madison, WI (United States)
27.
Zurück zum Zitat Mahmoudi A, Soong WL, Pellegrino G, Armando E (2015) Efficiency maps of electrical machines. In: 2015 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 2791–2799 Mahmoudi A, Soong WL, Pellegrino G, Armando E (2015) Efficiency maps of electrical machines. In: 2015 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 2791–2799
28.
Zurück zum Zitat Miller TJE (2001) Electronic control of switched reluctance machines. Elsevier Miller TJE (2001) Electronic control of switched reluctance machines. Elsevier
29.
Zurück zum Zitat Motor XP (2020) Performance analysis of the tesla model 3 electric motor using motorxp-pm Motor XP (2020) Performance analysis of the tesla model 3 electric motor using motorxp-pm
30.
Zurück zum Zitat Neuhaus CR, Fuengwarodsakul NH, De Doncker RW (2006) Predictive PWM-based direct instantaneous torque control of switched reluctance drives. In: 2006 37th IEEE power electronics specialists conference. IEEE, pp 1–7 Neuhaus CR, Fuengwarodsakul NH, De Doncker RW (2006) Predictive PWM-based direct instantaneous torque control of switched reluctance drives. In: 2006 37th IEEE power electronics specialists conference. IEEE, pp 1–7
31.
Zurück zum Zitat Nie Y, Brown IP, Ludois DC (2017) Deadbeat-direct torque and flux control for wound field synchronous machines. IEEE Trans Ind Electron 65(3):2069–2079CrossRef Nie Y, Brown IP, Ludois DC (2017) Deadbeat-direct torque and flux control for wound field synchronous machines. IEEE Trans Ind Electron 65(3):2069–2079CrossRef
32.
Zurück zum Zitat Nøland JK, Nuzzo S, Tessarolo A, Alves EF (2019) Excitation system technologies for wound-field synchronous machines: survey of solutions and evolving trends. IEEE Access 7:109,699–109,718 Nøland JK, Nuzzo S, Tessarolo A, Alves EF (2019) Excitation system technologies for wound-field synchronous machines: survey of solutions and evolving trends. IEEE Access 7:109,699–109,718
33.
Zurück zum Zitat Oprea C, Dziechciarz A, Martis C (2015) Comparative analysis of different synchronous reluctance motor topologies. In: 2015 IEEE 15th international conference on environment and electrical engineering (EEEIC). IEEE, pp 1904–1909 Oprea C, Dziechciarz A, Martis C (2015) Comparative analysis of different synchronous reluctance motor topologies. In: 2015 IEEE 15th international conference on environment and electrical engineering (EEEIC). IEEE, pp 1904–1909
34.
Zurück zum Zitat Ozcelik NG, Dogru UE, Imeryuz M, Ergene LT (2019) Synchronous reluctance motor vs. induction motor at low-power industrial applications: design and comparison. Energies 12(11):2190 Ozcelik NG, Dogru UE, Imeryuz M, Ergene LT (2019) Synchronous reluctance motor vs. induction motor at low-power industrial applications: design and comparison. Energies 12(11):2190
35.
Zurück zum Zitat Pavel CC, Marmier A, Alves Dias P, Blagoeva D, Tzimas E, Schüler D, Schleicher T, Jenseit W, Degreif S, Buchert M (2016) Substitution of critical raw materials in low-carbon technologies: lighting, wind turbines and electric vehicles. European Commission, Oko-Institut eV, Luxembourg Pavel CC, Marmier A, Alves Dias P, Blagoeva D, Tzimas E, Schüler D, Schleicher T, Jenseit W, Degreif S, Buchert M (2016) Substitution of critical raw materials in low-carbon technologies: lighting, wind turbines and electric vehicles. European Commission, Oko-Institut eV, Luxembourg
36.
Zurück zum Zitat Pellegrino G, Vagati A, Guglielmi P, Boazzo B (2011) Performance comparison between surface-mounted and interior pm motor drives for electric vehicle application. IEEE Trans Ind Electron 59(2):803–811CrossRef Pellegrino G, Vagati A, Guglielmi P, Boazzo B (2011) Performance comparison between surface-mounted and interior pm motor drives for electric vehicle application. IEEE Trans Ind Electron 59(2):803–811CrossRef
37.
Zurück zum Zitat Pellegrino G, Vagati A, Boazzo B, Guglielmi P (2012) Comparison of induction and pm synchronous motor drives for ev application including design examples. IEEE Trans Ind Appl 48(6):2322–2332CrossRef Pellegrino G, Vagati A, Boazzo B, Guglielmi P (2012) Comparison of induction and pm synchronous motor drives for ev application including design examples. IEEE Trans Ind Appl 48(6):2322–2332CrossRef
38.
Zurück zum Zitat Petersson A (2005) Analysis, modeling and control of doubly-fed induction generators for wind turbines. Chalmers Tekniska Hogskola (Sweden) Petersson A (2005) Analysis, modeling and control of doubly-fed induction generators for wind turbines. Chalmers Tekniska Hogskola (Sweden)
39.
Zurück zum Zitat Popescu M, Goss J, Staton DA, Hawkins D, Chong YC, Boglietti A (2018) Electrical vehicles-practical solutions for power traction motor systems. IEEE Trans Ind Appl 54(3):2751–2762CrossRef Popescu M, Goss J, Staton DA, Hawkins D, Chong YC, Boglietti A (2018) Electrical vehicles-practical solutions for power traction motor systems. IEEE Trans Ind Appl 54(3):2751–2762CrossRef
40.
Zurück zum Zitat Popescu M, Riviere N, Volpe G, Villani M, Fabri G, di Leonardo L (2019) A copper rotor induction motor solution for electrical vehicles traction system. In: 2019 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 3924–3930 Popescu M, Riviere N, Volpe G, Villani M, Fabri G, di Leonardo L (2019) A copper rotor induction motor solution for electrical vehicles traction system. In: 2019 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 3924–3930
41.
Zurück zum Zitat Radun AV (1995) Design considerations for the switched reluctance motor. IEEE Trans Ind Appl 31(5):1079–1087CrossRef Radun AV (1995) Design considerations for the switched reluctance motor. IEEE Trans Ind Appl 31(5):1079–1087CrossRef
42.
Zurück zum Zitat Ralev I, Qi F, Burkhart B, Klein-Hessling A, De Doncker RW (2017) Impact of smooth torque control on the efficiency of a high-speed automotive switched reluctance drive. IEEE Trans Ind Appl 53(6):5509–5517CrossRef Ralev I, Qi F, Burkhart B, Klein-Hessling A, De Doncker RW (2017) Impact of smooth torque control on the efficiency of a high-speed automotive switched reluctance drive. IEEE Trans Ind Appl 53(6):5509–5517CrossRef
43.
Zurück zum Zitat Rao D, Bagianathan M (2021) Selection of optimal magnets for traction motors to prevent demagnetization. Machines 9(6):124CrossRef Rao D, Bagianathan M (2021) Selection of optimal magnets for traction motors to prevent demagnetization. Machines 9(6):124CrossRef
44.
Zurück zum Zitat Riba JR, López-Torres C, Romeral L, Garcia A (2016) Rare-earth-free propulsion motors for electric vehicles: a technology review. Renew Sustain Energy Rev 57:367–379CrossRef Riba JR, López-Torres C, Romeral L, Garcia A (2016) Rare-earth-free propulsion motors for electric vehicles: a technology review. Renew Sustain Energy Rev 57:367–379CrossRef
45.
Zurück zum Zitat Sarlioglu B, Morris CT, Han D, Li S (2016) Driving toward accessibility: a review of technological improvements for electric machines, power electronics, and batteries for electric and hybrid vehicles. IEEE Ind Appl Mag 23(1):14–25CrossRef Sarlioglu B, Morris CT, Han D, Li S (2016) Driving toward accessibility: a review of technological improvements for electric machines, power electronics, and batteries for electric and hybrid vehicles. IEEE Ind Appl Mag 23(1):14–25CrossRef
46.
Zurück zum Zitat Sirimanna S, Balachandran T, Haran K (2022) A review on magnet loss analysis, validation, design considerations, and reduction strategies in permanent magnet synchronous motors. Energies 15(17):6116CrossRef Sirimanna S, Balachandran T, Haran K (2022) A review on magnet loss analysis, validation, design considerations, and reduction strategies in permanent magnet synchronous motors. Energies 15(17):6116CrossRef
47.
Zurück zum Zitat Staton D, Miller T, Wood S (1993) Maximising the saliency ratio of the synchronous reluctance motor. In: IEE proceedings B (electric power applications), IET, vol 140, pp 249–259 Staton D, Miller T, Wood S (1993) Maximising the saliency ratio of the synchronous reluctance motor. In: IEE proceedings B (electric power applications), IET, vol 140, pp 249–259
48.
Zurück zum Zitat Tahi S, Ibtiouen R, Bounekhla M (2011) Design optimization of two synchronous reluctance machine structures with maximized torque and power factor. Prog Electromagn Res B 35:369–387CrossRef Tahi S, Ibtiouen R, Bounekhla M (2011) Design optimization of two synchronous reluctance machine structures with maximized torque and power factor. Prog Electromagn Res B 35:369–387CrossRef
49.
Zurück zum Zitat Takeno M, Chiba A, Hoshi N, Ogasawara S, Takemoto M, Rahman MA (2012) Test results and torque improvement of the 50-kw switched reluctance motor designed for hybrid electric vehicles. IEEE Trans Ind Appl 48(4):1327–1334CrossRef Takeno M, Chiba A, Hoshi N, Ogasawara S, Takemoto M, Rahman MA (2012) Test results and torque improvement of the 50-kw switched reluctance motor designed for hybrid electric vehicles. IEEE Trans Ind Appl 48(4):1327–1334CrossRef
50.
Zurück zum Zitat Thomas R, Husson H, Garbuio L, Gerbaud L (2021) Comparative study of the tesla model s and audi e-tron induction motors. In: 2021 17th conference on electrical machines drives and power systems (ELMA). IEEE, pp 1–6 Thomas R, Husson H, Garbuio L, Gerbaud L (2021) Comparative study of the tesla model s and audi e-tron induction motors. In: 2021 17th conference on electrical machines drives and power systems (ELMA). IEEE, pp 1–6
51.
Zurück zum Zitat Trzynadlowski AM (2000) Control of induction motors. Elsevier Trzynadlowski AM (2000) Control of induction motors. Elsevier
52.
Zurück zum Zitat Vagati A, Canova A, Chiampi M, Pastorelli M, Repetto M (2000) Design refinement of synchronous reluctance motors through finite-element analysis. IEEE Trans Ind Appl 36(4):1094–1102CrossRef Vagati A, Canova A, Chiampi M, Pastorelli M, Repetto M (2000) Design refinement of synchronous reluctance motors through finite-element analysis. IEEE Trans Ind Appl 36(4):1094–1102CrossRef
53.
Zurück zum Zitat Welchko B, Huse JB, Hiti S, Conlon BM, Stancu CC, Rahman KM, Tang D, Cawthorne WR (2011) Fault handling of inverter driven pm motor drives. US Patent App. 11/962,370 Welchko B, Huse JB, Hiti S, Conlon BM, Stancu CC, Rahman KM, Tang D, Cawthorne WR (2011) Fault handling of inverter driven pm motor drives. US Patent App. 11/962,370
54.
Zurück zum Zitat Widmer JD, Martin R, Kimiabeigi M (2015) Electric vehicle traction motors without rare earth magnets. Sustain Mater Technol 3:7–13 Widmer JD, Martin R, Kimiabeigi M (2015) Electric vehicle traction motors without rare earth magnets. Sustain Mater Technol 3:7–13
55.
Zurück zum Zitat Yang Y, Hu X, Pei H, Peng Z (2016) Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach. Appl Energy 168:683–690CrossRef Yang Y, Hu X, Pei H, Peng Z (2016) Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach. Appl Energy 168:683–690CrossRef
56.
Zurück zum Zitat Yang Z, Shang F, Brown IP, Krishnamurthy M (2015) Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for ev and hev applications. IEEE Trans Transp Electr 1(3):245–254CrossRef Yang Z, Shang F, Brown IP, Krishnamurthy M (2015) Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for ev and hev applications. IEEE Trans Transp Electr 1(3):245–254CrossRef
57.
Zurück zum Zitat Ye J, Bilgin B, Emadi A (2015) An offline torque sharing function for torque ripple reduction in switched reluctance motor drives. IEEE Trans Energy Convers 30(2):726–735CrossRef Ye J, Bilgin B, Emadi A (2015) An offline torque sharing function for torque ripple reduction in switched reluctance motor drives. IEEE Trans Energy Convers 30(2):726–735CrossRef
58.
Zurück zum Zitat Zeraoulia M, Benbouzid MEH, Diallo D (2006) Electric motor drive selection issues for hev propulsion systems: a comparative study. IEEE Trans Veh Technol 55(6):1756–1764CrossRef Zeraoulia M, Benbouzid MEH, Diallo D (2006) Electric motor drive selection issues for hev propulsion systems: a comparative study. IEEE Trans Veh Technol 55(6):1756–1764CrossRef
59.
Zurück zum Zitat Zhu Z, Chu W, Guan Y (2017) Quantitative comparison of electromagnetic performance of electrical machines for hevs/evs. CES Trans Electr Mach Syst 1(1):37–47CrossRef Zhu Z, Chu W, Guan Y (2017) Quantitative comparison of electromagnetic performance of electrical machines for hevs/evs. CES Trans Electr Mach Syst 1(1):37–47CrossRef
Metadaten
Titel
Introduction
verfasst von
Shuiwen Shen
Qiong-zhong Chen
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-38161-4_1

    Premium Partner