Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Xueqian Wang

Erschienen in: Study on Signal Detection and Recovery Methods with Joint Sparsity

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional signal processing methods are based on Nyquist sampling theory, i.e., the sampling frequency of a real signal should be larger than twice its bandwidth, while for a complex signal (e.g., radar signal), the sampling frequency is supposed to be larger than its bandwidth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121CrossRef Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121CrossRef
3.
Zurück zum Zitat Eldar YC, Kutyniok G (2012) Compressed sensing: theory and applications. Cambridge University Press Eldar YC, Kutyniok G (2012) Compressed sensing: theory and applications. Cambridge University Press
4.
Zurück zum Zitat Romberg J (2008) Imaging via compressive sampling. IEEE Signal Process Mag 25(2):14–20CrossRef Romberg J (2008) Imaging via compressive sampling. IEEE Signal Process Mag 25(2):14–20CrossRef
5.
Zurück zum Zitat Amin MG (2014) Compressive sensing for urban radar. CRC Press Amin MG (2014) Compressive sensing for urban radar. CRC Press
6.
Zurück zum Zitat Sun H, Nallanathan A, Wang CX et al (2013) Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel Commun 20(2):74–81CrossRef Sun H, Nallanathan A, Wang CX et al (2013) Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel Commun 20(2):74–81CrossRef
7.
Zurück zum Zitat Wright SJ, Nowak RD, Figueiredo MAT (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493MathSciNetMATHCrossRef Wright SJ, Nowak RD, Figueiredo MAT (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493MathSciNetMATHCrossRef
8.
Zurück zum Zitat Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of international conference on computer vision. IEEE, pp 471–478 Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of international conference on computer vision. IEEE, pp 471–478
9.
Zurück zum Zitat Gao Y, Ma J, Yuille AL (2017) Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Trans Image Process 26(5):2545–2560MathSciNetMATHCrossRef Gao Y, Ma J, Yuille AL (2017) Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Trans Image Process 26(5):2545–2560MathSciNetMATHCrossRef
10.
Zurück zum Zitat Liu S, Li L, Jin M et al (2019) Optimized coefficient vector and sparse representation based classification method for face recognition. IEEE Access 8:8668–8674CrossRef Liu S, Li L, Jin M et al (2019) Optimized coefficient vector and sparse representation based classification method for face recognition. IEEE Access 8:8668–8674CrossRef
11.
Zurück zum Zitat Li W, Zhou Y, Poh N et al (2013) Feature denoising using joint sparse representation for in-car speech recognition. IEEE Signal Process Lett 20(7):681–684CrossRef Li W, Zhou Y, Poh N et al (2013) Feature denoising using joint sparse representation for in-car speech recognition. IEEE Signal Process Lett 20(7):681–684CrossRef
12.
Zurück zum Zitat Primorac R, Togneri R, Bennamoun M et al (2016) Audio-visual biometric recognition via joint sparse representations. In: Proceedings of 23rd international conference on pattern recognition (ICPR). IEEE, pp 3031–3035 Primorac R, Togneri R, Bennamoun M et al (2016) Audio-visual biometric recognition via joint sparse representations. In: Proceedings of 23rd international conference on pattern recognition (ICPR). IEEE, pp 3031–3035
13.
Zurück zum Zitat Sharma P, Abrol V, Sao AK (2017) Deep-sparse-representation-based features for speech recognition. IEEE/ACM Trans Audio, Speech, Lang Process 25(11):2162–2175CrossRef Sharma P, Abrol V, Sao AK (2017) Deep-sparse-representation-based features for speech recognition. IEEE/ACM Trans Audio, Speech, Lang Process 25(11):2162–2175CrossRef
14.
Zurück zum Zitat Cui Z, Chang H, Shan S et al (2014) Joint sparse representation for video-based face recognition. Neurocomputing 135:306–312CrossRef Cui Z, Chang H, Shan S et al (2014) Joint sparse representation for video-based face recognition. Neurocomputing 135:306–312CrossRef
15.
Zurück zum Zitat Xu D, Huang Y, Zeng Z et al (2011) Human gait recognition using patch distribution feature and locality-constrained group sparse representation. IEEE Trans Image Process 21(1):316–326MathSciNetMATHCrossRef Xu D, Huang Y, Zeng Z et al (2011) Human gait recognition using patch distribution feature and locality-constrained group sparse representation. IEEE Trans Image Process 21(1):316–326MathSciNetMATHCrossRef
16.
Zurück zum Zitat Dai Q, Yoo S, Kappeler A et al (2016) Sparse representation-based multiple frame video super-resolution. IEEE Trans Image Process 26(2):765–781MathSciNetMATHCrossRef Dai Q, Yoo S, Kappeler A et al (2016) Sparse representation-based multiple frame video super-resolution. IEEE Trans Image Process 26(2):765–781MathSciNetMATHCrossRef
17.
Zurück zum Zitat Zhang Y, Zhang H, Yu M et al (2019) Sparse representation-based video quality assessment for synthesized 3D videos. IEEE Trans Image Process 29:509–524MathSciNetMATHCrossRef Zhang Y, Zhang H, Yu M et al (2019) Sparse representation-based video quality assessment for synthesized 3D videos. IEEE Trans Image Process 29:509–524MathSciNetMATHCrossRef
18.
Zurück zum Zitat Li G, Burkholder RJ (2015) Hybrid matching pursuit for distributed through-wall radar imaging. IEEE Trans Antennas Propag 63(4):1701–1711MathSciNetMATHCrossRef Li G, Burkholder RJ (2015) Hybrid matching pursuit for distributed through-wall radar imaging. IEEE Trans Antennas Propag 63(4):1701–1711MathSciNetMATHCrossRef
19.
Zurück zum Zitat Qiu W, Zhou J, Fu Q (2019) Jointly using low-rank and sparsity priors for sparse inverse synthetic aperture radar imaging. IEEE Trans Image Process 29:100–115MathSciNetMATHCrossRef Qiu W, Zhou J, Fu Q (2019) Jointly using low-rank and sparsity priors for sparse inverse synthetic aperture radar imaging. IEEE Trans Image Process 29:100–115MathSciNetMATHCrossRef
20.
Zurück zum Zitat Hu X, Tong N, Zhang Y et al (2018) MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery. IEEE Trans Geosci Remote Sens 56(10):5985–5996 Hu X, Tong N, Zhang Y et al (2018) MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery. IEEE Trans Geosci Remote Sens 56(10):5985–5996
21.
Zurück zum Zitat Peng X, Tan W, Hong W et al (2015) Airborne DLSLA 3-D SAR image reconstruction by combination of polar formatting and L1 regularization. IEEE Trans Geosci Remote Sens 54(1):213–226CrossRef Peng X, Tan W, Hong W et al (2015) Airborne DLSLA 3-D SAR image reconstruction by combination of polar formatting and L1 regularization. IEEE Trans Geosci Remote Sens 54(1):213–226CrossRef
22.
Zurück zum Zitat Bi H, Bi G, Zhang B et al (2018) Complex-image-based sparse SAR imaging and its equivalence. IEEE Trans Geosci Remote Sens 56(9):5006–5014CrossRef Bi H, Bi G, Zhang B et al (2018) Complex-image-based sparse SAR imaging and its equivalence. IEEE Trans Geosci Remote Sens 56(9):5006–5014CrossRef
23.
Zurück zum Zitat Graff CG, Sidky EY (2018) Compressive sensing in medical imaging. Appl Opt 54(8):C23–C44CrossRef Graff CG, Sidky EY (2018) Compressive sensing in medical imaging. Appl Opt 54(8):C23–C44CrossRef
24.
Zurück zum Zitat Mardani M, Gong E, Cheng JY et al (2018) Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging 38(1):167–179CrossRef Mardani M, Gong E, Cheng JY et al (2018) Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging 38(1):167–179CrossRef
25.
Zurück zum Zitat Jacob M, Ye JC, Ying L et al (2020) Computational MRI: compressive sensing and beyond. IEEE Signal Process Mag 37(1):21–23CrossRef Jacob M, Ye JC, Ying L et al (2020) Computational MRI: compressive sensing and beyond. IEEE Signal Process Mag 37(1):21–23CrossRef
26.
Zurück zum Zitat Han Y, Ye JC (2018) Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans Med Imaging 37(6):1418–1429CrossRef Han Y, Ye JC (2018) Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans Med Imaging 37(6):1418–1429CrossRef
27.
Zurück zum Zitat Shao Z, Wang L, Wang Z et al (2019) Remote sensing image super-resolution using sparse representation and coupled sparse autoencoder. IEEE J Sel Top Appl Earth Observations Remote Sens 12(8):2663–2674CrossRef Shao Z, Wang L, Wang Z et al (2019) Remote sensing image super-resolution using sparse representation and coupled sparse autoencoder. IEEE J Sel Top Appl Earth Observations Remote Sens 12(8):2663–2674CrossRef
28.
Zurück zum Zitat Zhang Y, Liu J, Yang W et al (2015) Image super-resolution based on structure-modulated sparse representation. IEEE Trans Image Process 24(9):2797–2810MathSciNetMATHCrossRef Zhang Y, Liu J, Yang W et al (2015) Image super-resolution based on structure-modulated sparse representation. IEEE Trans Image Process 24(9):2797–2810MathSciNetMATHCrossRef
29.
Zurück zum Zitat Dong W, Fu F, Shi G et al (2016) Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Trans Image Process 25(5):2337–2352MathSciNetMATHCrossRef Dong W, Fu F, Shi G et al (2016) Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Trans Image Process 25(5):2337–2352MathSciNetMATHCrossRef
30.
Zurück zum Zitat Li S, Yin H, Fang L (2012) Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Trans Biomed Eng 59(12):3450–3459CrossRef Li S, Yin H, Fang L (2012) Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Trans Biomed Eng 59(12):3450–3459CrossRef
31.
Zurück zum Zitat Liu S, Liu M, Li P et al (2017) SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning. IEEE Trans Geosci Remote Sens 55(5):2985–2992CrossRef Liu S, Liu M, Li P et al (2017) SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning. IEEE Trans Geosci Remote Sens 55(5):2985–2992CrossRef
32.
Zurück zum Zitat Wang Q, Zhang X, Wu Y et al (2017) Nonconvex weighted lq minimization based group sparse representation framework for image denoising. IEEE Signal Process Lett 24(11):1686–1690CrossRef Wang Q, Zhang X, Wu Y et al (2017) Nonconvex weighted lq minimization based group sparse representation framework for image denoising. IEEE Signal Process Lett 24(11):1686–1690CrossRef
33.
Zurück zum Zitat Wei C, Liu H, Zhang Z et al (2017) Near-optimum sparse channel estimation based on least squares and approximate message passing. IEEE Wirel Commun Lett 6(6):754–757CrossRef Wei C, Liu H, Zhang Z et al (2017) Near-optimum sparse channel estimation based on least squares and approximate message passing. IEEE Wirel Commun Lett 6(6):754–757CrossRef
34.
Zurück zum Zitat Ma X, Yang F, Liu S et al (2017) Design and optimization on training sequence for mmWave communications: a new approach for sparse channel estimation in massive MIMO. IEEE J Sel Areas Commun 35(7):1486–1497CrossRef Ma X, Yang F, Liu S et al (2017) Design and optimization on training sequence for mmWave communications: a new approach for sparse channel estimation in massive MIMO. IEEE J Sel Areas Commun 35(7):1486–1497CrossRef
35.
Zurück zum Zitat Malioutov D, Cetin M, Willsky AS (2005) A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans Signal Process 53(8):3010–3022MathSciNetMATHCrossRef Malioutov D, Cetin M, Willsky AS (2005) A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans Signal Process 53(8):3010–3022MathSciNetMATHCrossRef
36.
Zurück zum Zitat Cotter SF, Rao BD, Engan K et al (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488MathSciNetMATHCrossRef Cotter SF, Rao BD, Engan K et al (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488MathSciNetMATHCrossRef
37.
Zurück zum Zitat Lee O, Kim JM, Bresler Y et al (2011) Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity. IEEE Trans Med Imaging 30(5):1129–1142CrossRef Lee O, Kim JM, Bresler Y et al (2011) Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity. IEEE Trans Med Imaging 30(5):1129–1142CrossRef
38.
Zurück zum Zitat Tivive FHC, Bouzerdoum A, Abeynayake C (2018) GPR target detection by joint sparse and low-rank matrix decomposition. IEEE Trans Geosci Remote Sens 57(5):2583–2595CrossRef Tivive FHC, Bouzerdoum A, Abeynayake C (2018) GPR target detection by joint sparse and low-rank matrix decomposition. IEEE Trans Geosci Remote Sens 57(5):2583–2595CrossRef
39.
Zurück zum Zitat Tang VH, Bouzerdoum A, Phung SL (2017) Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations. IEEE Trans Image Process 27(4):1763–1776MathSciNetMATHCrossRef Tang VH, Bouzerdoum A, Phung SL (2017) Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations. IEEE Trans Image Process 27(4):1763–1776MathSciNetMATHCrossRef
40.
Zurück zum Zitat Hu X, Tong N, Zhang Y et al (2017) MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery. IEEE Trans Geosci Remote Sens 56(10):5985–5996 Hu X, Tong N, Zhang Y et al (2017) MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery. IEEE Trans Geosci Remote Sens 56(10):5985–5996
41.
Zurück zum Zitat Wimalajeewa T, Varshney PK (2014) OMP based joint sparsity pattern recovery under communication constraints. IEEE Trans Signal Process 62(19):5059–5072MathSciNetMATHCrossRef Wimalajeewa T, Varshney PK (2014) OMP based joint sparsity pattern recovery under communication constraints. IEEE Trans Signal Process 62(19):5059–5072MathSciNetMATHCrossRef
42.
Zurück zum Zitat Wimalajeewa T, Varshney PK (2016) Sparse signal detection with compressive measurements via partial support set estimation. IEEE Trans Sign Inf Process Over Netw 3(1):46–60MathSciNetCrossRef Wimalajeewa T, Varshney PK (2016) Sparse signal detection with compressive measurements via partial support set estimation. IEEE Trans Sign Inf Process Over Netw 3(1):46–60MathSciNetCrossRef
43.
Zurück zum Zitat Zeng F, Li C, Tian Z (2010) Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE J Sel Top Sign Proces 5(1):37–48CrossRef Zeng F, Li C, Tian Z (2010) Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE J Sel Top Sign Proces 5(1):37–48CrossRef
44.
Zurück zum Zitat Wang X, Li G, Varshney PK (2018) Detection of sparse signals in sensor networks via locally most powerful tests. IEEE Signal Process Lett 25(9):1418–1422CrossRef Wang X, Li G, Varshney PK (2018) Detection of sparse signals in sensor networks via locally most powerful tests. IEEE Signal Process Lett 25(9):1418–1422CrossRef
45.
Zurück zum Zitat Wang X, Li G, Varshney PK (2019) Detection of sparse stochastic signals with quantized measurements in sensor networks. IEEE Trans Sign Process 67(8):2210–2220MathSciNetMATHCrossRef Wang X, Li G, Varshney PK (2019) Detection of sparse stochastic signals with quantized measurements in sensor networks. IEEE Trans Sign Process 67(8):2210–2220MathSciNetMATHCrossRef
46.
Zurück zum Zitat Wang X, Li G, Quan C et al (2019) Distributed detection of sparse stochastic signals with quantized measurements: the generalized gaussian case. IEEE Trans Sign Process 67(18):4886–4898MathSciNetMATHCrossRef Wang X, Li G, Quan C et al (2019) Distributed detection of sparse stochastic signals with quantized measurements: the generalized gaussian case. IEEE Trans Sign Process 67(18):4886–4898MathSciNetMATHCrossRef
47.
Zurück zum Zitat Li C, He Y, Wang X et al (2019) Distributed detection of sparse stochastic signals via fusion of 1-bit local likelihood ratios. IEEE Sign Process Lett 26(12):1738–1742CrossRef Li C, He Y, Wang X et al (2019) Distributed detection of sparse stochastic signals via fusion of 1-bit local likelihood ratios. IEEE Sign Process Lett 26(12):1738–1742CrossRef
48.
Zurück zum Zitat Tan Z, Yang P, Nehorai A (2014) Joint sparse recovery method for compressed sensing with structured dictionary mismatches. IEEE Trans Sign Process 62(19):4997–5008MathSciNetMATHCrossRef Tan Z, Yang P, Nehorai A (2014) Joint sparse recovery method for compressed sensing with structured dictionary mismatches. IEEE Trans Sign Process 62(19):4997–5008MathSciNetMATHCrossRef
49.
Zurück zum Zitat Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202MathSciNetMATHCrossRef Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202MathSciNetMATHCrossRef
50.
Zurück zum Zitat Zhang Y, Du B, Zhang L et al (2016) Joint sparse representation and multitask learning for hyperspectral target detection. IEEE Trans Geosci Remote Sens 55(2):894–906CrossRef Zhang Y, Du B, Zhang L et al (2016) Joint sparse representation and multitask learning for hyperspectral target detection. IEEE Trans Geosci Remote Sens 55(2):894–906CrossRef
51.
Zurück zum Zitat Zhang Y, Du B, Zhang Y et al (2017) Spatially adaptive sparse representation for target detection in hyperspectral images. IEEE Geosci Remote Sens Lett 14(11):1923–1927CrossRef Zhang Y, Du B, Zhang Y et al (2017) Spatially adaptive sparse representation for target detection in hyperspectral images. IEEE Geosci Remote Sens Lett 14(11):1923–1927CrossRef
52.
Zurück zum Zitat Yang Z, Xie L (2016) Exact joint sparse frequency recovery via optimization methods. IEEE Trans Sign Process 64(19):5145–5157MathSciNetMATHCrossRef Yang Z, Xie L (2016) Exact joint sparse frequency recovery via optimization methods. IEEE Trans Sign Process 64(19):5145–5157MathSciNetMATHCrossRef
53.
Zurück zum Zitat Chen H, Shao HZ, Wang WQ (2017) Joint sparsity-based range-angle-dependent beampattern synthesis for frequency diverse array. IEEE Access 5:15152–15161CrossRef Chen H, Shao HZ, Wang WQ (2017) Joint sparsity-based range-angle-dependent beampattern synthesis for frequency diverse array. IEEE Access 5:15152–15161CrossRef
54.
Zurück zum Zitat Hu X et al (2016) Joint sparsity-driven three-dimensional imaging method for multiple-input multiple-output radar with sparse antenna array. IET Radar Sonar Navig 11(5):709–720CrossRef Hu X et al (2016) Joint sparsity-driven three-dimensional imaging method for multiple-input multiple-output radar with sparse antenna array. IET Radar Sonar Navig 11(5):709–720CrossRef
55.
Zurück zum Zitat Lee O, Kim JM, Bresler Y et al (2011) Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity. IEEE Trans Med Imaging 30(5):1129-1142 Lee O, Kim JM, Bresler Y et al (2011) Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity. IEEE Trans Med Imaging 30(5):1129-1142
56.
Zurück zum Zitat Kay SM (1998a) Fundamentals of statistical signal processing: detection theory. Prentice-Hall, Upper Saddle River, NJ Kay SM (1998a) Fundamentals of statistical signal processing: detection theory. Prentice-Hall, Upper Saddle River, NJ
57.
Zurück zum Zitat Kay SM (1998b) Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Upper Saddle River, NJMATH Kay SM (1998b) Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Upper Saddle River, NJMATH
58.
Zurück zum Zitat Tropp JA, Gilbert AC, Strauss MJ (2006) Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Sign Process 86(3):572–588MATHCrossRef Tropp JA, Gilbert AC, Strauss MJ (2006) Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Sign Process 86(3):572–588MATHCrossRef
59.
Zurück zum Zitat Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Sign Process 86(3):589–602MATHCrossRef Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Sign Process 86(3):589–602MATHCrossRef
61.
Zurück zum Zitat Li C, Li G, Kailkhura B et al (2019) Secure distributed detection of sparse signals via falsification of local compressive measurements. IEEE Trans Signal Process 67(18):4696–4706MathSciNetMATHCrossRef Li C, Li G, Kailkhura B et al (2019) Secure distributed detection of sparse signals via falsification of local compressive measurements. IEEE Trans Signal Process 67(18):4696–4706MathSciNetMATHCrossRef
62.
Zurück zum Zitat Zayyani H, Haddadi F, Korki M (2016) Double detector for sparse signal detection from one-bit compressed sensing measurements. IEEE Signal Process Lett 23(11):1637–1641CrossRef Zayyani H, Haddadi F, Korki M (2016) Double detector for sparse signal detection from one-bit compressed sensing measurements. IEEE Signal Process Lett 23(11):1637–1641CrossRef
63.
Zurück zum Zitat Chatterjee S, Sundman D, Vehkapera M et al (2008) Projection-based and look-ahead strategies for atom selection. IEEE Trans Signal Process 60(2):634–647MathSciNetMATHCrossRef Chatterjee S, Sundman D, Vehkapera M et al (2008) Projection-based and look-ahead strategies for atom selection. IEEE Trans Signal Process 60(2):634–647MathSciNetMATHCrossRef
64.
Zurück zum Zitat Cevher V, Indyk P, Carin L et al (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103 Cevher V, Indyk P, Carin L et al (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103
65.
Zurück zum Zitat Eldar YC, Kuppinger P, Bolcskei H (2010) Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans Signal Process 58(6):3042–3054MathSciNetMATHCrossRef Eldar YC, Kuppinger P, Bolcskei H (2010) Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans Signal Process 58(6):3042–3054MathSciNetMATHCrossRef
66.
Zurück zum Zitat Wang X, Li G, Liu Y et al (2018) Two-level block matching pursuit for polarimetric through-wall radar imaging. IEEE Trans Geosci Remote Sens 56(3):1533–1545CrossRef Wang X, Li G, Liu Y et al (2018) Two-level block matching pursuit for polarimetric through-wall radar imaging. IEEE Trans Geosci Remote Sens 56(3):1533–1545CrossRef
67.
Zurück zum Zitat Wang X, Li G, Liu Y et al (2019) Enhanced 1-bit radar imaging by exploiting two-level block sparsity. IEEE Trans Geosci Remote Sens 57(2):1131–1141CrossRef Wang X, Li G, Liu Y et al (2019) Enhanced 1-bit radar imaging by exploiting two-level block sparsity. IEEE Trans Geosci Remote Sens 57(2):1131–1141CrossRef
68.
69.
Zurück zum Zitat Jacques L, Hammond DK, Fadili JM (2010) Dequantizing compressed sensing: when oversampling and non-gaussian constraints combine. IEEE Trans Inf Theory 57(1):559–571MathSciNetMATHCrossRef Jacques L, Hammond DK, Fadili JM (2010) Dequantizing compressed sensing: when oversampling and non-gaussian constraints combine. IEEE Trans Inf Theory 57(1):559–571MathSciNetMATHCrossRef
70.
Zurück zum Zitat Boufounos PT, Baraniuk RG (2008) 1-bit compressive sensing. In: Proceedings of 42nd annual conference on information sciences and systems. IEEE, pp 16–21 Boufounos PT, Baraniuk RG (2008) 1-bit compressive sensing. In: Proceedings of 42nd annual conference on information sciences and systems. IEEE, pp 16–21
71.
Zurück zum Zitat Dong X, Zhang Y (2015) A MAP approach for 1-bit compressive sensing in synthetic aperture radar imaging. IEEE Geosci Remote Sens Lett 12(6):1237–1241CrossRef Dong X, Zhang Y (2015) A MAP approach for 1-bit compressive sensing in synthetic aperture radar imaging. IEEE Geosci Remote Sens Lett 12(6):1237–1241CrossRef
72.
73.
Zurück zum Zitat Haupt J, Bajwa WU, Rabbat M et al (2008) Compressed sensing for networked data. IEEE Signal Process Mag 25(2):92–101CrossRef Haupt J, Bajwa WU, Rabbat M et al (2008) Compressed sensing for networked data. IEEE Signal Process Mag 25(2):92–101CrossRef
74.
Zurück zum Zitat Banerjee S, Agrawal M (2013) Underwater acoustic noise with generalized Gaussian statistics: effects on error performance. In: Proceedings of MTS/IEEE OCEANS-Bergen. IEEE, pp 1–8 Banerjee S, Agrawal M (2013) Underwater acoustic noise with generalized Gaussian statistics: effects on error performance. In: Proceedings of MTS/IEEE OCEANS-Bergen. IEEE, pp 1–8
75.
Zurück zum Zitat Davenport MA, Boufounos PT, Wakin MB et al (2010) Signal processing with compressive measurements. IEEE J Sel Top Sign Process 4(2):445–460CrossRef Davenport MA, Boufounos PT, Wakin MB et al (2010) Signal processing with compressive measurements. IEEE J Sel Top Sign Process 4(2):445–460CrossRef
76.
Zurück zum Zitat Cao J, Lin Z (2014) Bayesian signal detection with compressed measurements. Inf Sci 289:241–253MATHCrossRef Cao J, Lin Z (2014) Bayesian signal detection with compressed measurements. Inf Sci 289:241–253MATHCrossRef
77.
Zurück zum Zitat Wimalajeewa T, Chen H, Varshney PK (2010) Performance analysis of stochastic signal detection with compressive measurements. In: Proceedings of forty fourth asilomar conference on signals, systems and computers. IEEE, pp 813–817 Wimalajeewa T, Chen H, Varshney PK (2010) Performance analysis of stochastic signal detection with compressive measurements. In: Proceedings of forty fourth asilomar conference on signals, systems and computers. IEEE, pp 813–817
78.
Zurück zum Zitat Rao BSMR, Chatterjee S, Ottersten B (2012) Detection of sparse random signals using compressive measurements. In: Proceedings of international conference on acoustics, speech and signal processing. IEEE, pp 3257–3260 Rao BSMR, Chatterjee S, Ottersten B (2012) Detection of sparse random signals using compressive measurements. In: Proceedings of international conference on acoustics, speech and signal processing. IEEE, pp 3257–3260
79.
Zurück zum Zitat Duarte MF, Davenport MA, Wakin MB et al (2006) Sparse signal detection from incoherent projections. In: Proceedings of international conference on acoustics speech and signal processing. IEEE, pp 305–308 Duarte MF, Davenport MA, Wakin MB et al (2006) Sparse signal detection from incoherent projections. In: Proceedings of international conference on acoustics speech and signal processing. IEEE, pp 305–308
80.
Zurück zum Zitat Wimalajeewa T, Varshney PK (2013) Cooperative sparsity pattern recovery in distributed networks via distributed-OMP. In: Proceedings of international conference on acoustics, speech and signal processing. IEEE, pp 5288–5292 Wimalajeewa T, Varshney PK (2013) Cooperative sparsity pattern recovery in distributed networks via distributed-OMP. In: Proceedings of international conference on acoustics, speech and signal processing. IEEE, pp 5288–5292
81.
Zurück zum Zitat Li G, Zhang H, Wimalajeewa T et al (2014) On the detection of sparse signals with sensor networks based on subspace pursuit. In: Proceedings of IEEE global conference on signal and information processing, pp 438–442 Li G, Zhang H, Wimalajeewa T et al (2014) On the detection of sparse signals with sensor networks based on subspace pursuit. In: Proceedings of IEEE global conference on signal and information processing, pp 438–442
82.
Zurück zum Zitat Zhao W, Li G (2015) On the detection probability of sparse signals with sensor networks based on distributed subspace pursuit. In: Proceedings of IEEE China summit and international conference on signal and information processing, pp 324–328 Zhao W, Li G (2015) On the detection probability of sparse signals with sensor networks based on distributed subspace pursuit. In: Proceedings of IEEE China summit and international conference on signal and information processing, pp 324–328
83.
Zurück zum Zitat Ma J, Xie J, Gan L (2018) Compressive detection of unknown-parameters signals without signal reconstruction. Sign Process 142:114–118CrossRef Ma J, Xie J, Gan L (2018) Compressive detection of unknown-parameters signals without signal reconstruction. Sign Process 142:114–118CrossRef
84.
Zurück zum Zitat Ma J, Gan L, Liao H et al (2019) Sparse signal detection without reconstruction based on compressive sensing. Sign Process 162:211–220CrossRef Ma J, Gan L, Liao H et al (2019) Sparse signal detection without reconstruction based on compressive sensing. Sign Process 162:211–220CrossRef
85.
Zurück zum Zitat Hariri A, Babaie-Zadeh M (2017) Compressive detection of sparse signals in additive white Gaussian noise without signal reconstruction. Sign Process 131:376–385CrossRef Hariri A, Babaie-Zadeh M (2017) Compressive detection of sparse signals in additive white Gaussian noise without signal reconstruction. Sign Process 131:376–385CrossRef
86.
Zurück zum Zitat Chen J, Huo X (2005) Sparse representations for multiple measurement vectors (MMV) in an over-complete dictionary. In: Proceedings of international conference on acoustics, speech, and signal processing. IEEE, pp 257–260 Chen J, Huo X (2005) Sparse representations for multiple measurement vectors (MMV) in an over-complete dictionary. In: Proceedings of international conference on acoustics, speech, and signal processing. IEEE, pp 257–260
87.
Zurück zum Zitat Chen J, Huo X (2006) Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans Sign Process 54(12):4634–4643MATHCrossRef Chen J, Huo X (2006) Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans Sign Process 54(12):4634–4643MATHCrossRef
88.
Zurück zum Zitat Eldar YC, Mishali M (2009) Robust recovery of signals from a structured union of subspaces. IEEE Trans Inf Theory 55(11):5302–5316MathSciNetMATHCrossRef Eldar YC, Mishali M (2009) Robust recovery of signals from a structured union of subspaces. IEEE Trans Inf Theory 55(11):5302–5316MathSciNetMATHCrossRef
89.
Zurück zum Zitat Grant M, Boyd S (2014) CVX: matlab software for disciplined convex programming, version 2.1 Grant M, Boyd S (2014) CVX: matlab software for disciplined convex programming, version 2.1
91.
Zurück zum Zitat Hyder MM, Mahata K (2009) A robust algorithm for joint-sparse recovery. IEEE Sign Process Lett 16(12):1091–1094CrossRef Hyder MM, Mahata K (2009) A robust algorithm for joint-sparse recovery. IEEE Sign Process Lett 16(12):1091–1094CrossRef
92.
Zurück zum Zitat Hyder M, Mahata K (2009) An approximate l0 norm minimization algorithm for compressed sensing. In: Proceedings of international conference on acoustics, speech and signal processing. IEEE, pp 3365–3368 Hyder M, Mahata K (2009) An approximate l0 norm minimization algorithm for compressed sensing. In: Proceedings of international conference on acoustics, speech and signal processing. IEEE, pp 3365–3368
93.
Zurück zum Zitat Mohimani H, Babaie-Zadeh M, Jutten C (2008) A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Trans Sign Process 57(1):289–301MATHCrossRef Mohimani H, Babaie-Zadeh M, Jutten C (2008) A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Trans Sign Process 57(1):289–301MATHCrossRef
94.
Zurück zum Zitat Hyder MM, Mahata K (2008) Direction-of-arrival estimation using a mixed l2,0 norm approximation. IEEE Trans Sign Process 58(9):4646–4655MATHCrossRef Hyder MM, Mahata K (2008) Direction-of-arrival estimation using a mixed l2,0 norm approximation. IEEE Trans Sign Process 58(9):4646–4655MATHCrossRef
95.
Zurück zum Zitat Ling Q, Wen Z, Yin W (2012) Decentralized jointly sparse optimization by reweighted lq minimization. IEEE Trans Sign Process 61(5):1165–1170MATHCrossRef Ling Q, Wen Z, Yin W (2012) Decentralized jointly sparse optimization by reweighted lq minimization. IEEE Trans Sign Process 61(5):1165–1170MATHCrossRef
96.
Zurück zum Zitat Candes EJ, Wakin MB, Boyd SP (2012) Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14(5–6):877–905MATH Candes EJ, Wakin MB, Boyd SP (2012) Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14(5–6):877–905MATH
97.
Zurück zum Zitat Wei MH, Scott WR, McClellan JH (2012) Jointly sparse vector recovery via reweighted l1 minimization. In: Proceedings of international conference on acoustics, speech and signal processing. IEEE, pp 3929–3932 Wei MH, Scott WR, McClellan JH (2012) Jointly sparse vector recovery via reweighted l1 minimization. In: Proceedings of international conference on acoustics, speech and signal processing. IEEE, pp 3929–3932
98.
Zurück zum Zitat Fosson SM, Matamoros J, Antón-Haro C et al (2016) Distributed recovery of jointly sparse signals under communication constraints. IEEE Trans Signal Process 64(13):3470–3482MathSciNetMATHCrossRef Fosson SM, Matamoros J, Antón-Haro C et al (2016) Distributed recovery of jointly sparse signals under communication constraints. IEEE Trans Signal Process 64(13):3470–3482MathSciNetMATHCrossRef
99.
Zurück zum Zitat Chen LM (2016) Theory and algorithms of sparse recovery via non-convex optimization [Doctoral dissertation]. Department of Electronic Engineering, Tsinghua University Chen LM (2016) Theory and algorithms of sparse recovery via non-convex optimization [Doctoral dissertation]. Department of Electronic Engineering, Tsinghua University
100.
Zurück zum Zitat Wipf DP, Rao BD (2007) An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans Signal Process 55(7):3704–3716MathSciNetMATHCrossRef Wipf DP, Rao BD (2007) An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans Signal Process 55(7):3704–3716MathSciNetMATHCrossRef
101.
Zurück zum Zitat Ji S, Dunson D, Carin L (2008) Multitask compressive sensing. IEEE Trans Sign Process 57(1):92–106 Ji S, Dunson D, Carin L (2008) Multitask compressive sensing. IEEE Trans Sign Process 57(1):92–106
102.
Zurück zum Zitat Zhang Z, Rao BD (2011) Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE J Sel Top Sign Process 5(5):912–926CrossRef Zhang Z, Rao BD (2011) Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE J Sel Top Sign Process 5(5):912–926CrossRef
103.
Zurück zum Zitat Wu Q, Zhang YD, Ahmad F et al (2014) Compressive-sensing-based high-resolution polarimetric through-the-wall radar imaging exploiting target characteristics. IEEE Antennas Wirel Propag Lett 14:1043–1047CrossRef Wu Q, Zhang YD, Ahmad F et al (2014) Compressive-sensing-based high-resolution polarimetric through-the-wall radar imaging exploiting target characteristics. IEEE Antennas Wirel Propag Lett 14:1043–1047CrossRef
104.
Zurück zum Zitat Wu Q, Zhang YD, Amin MG et al (2014) Multi-task Bayesian compressive sensing exploiting intra-task dependency. IEEE Sign Process Lett 22(4):430–434 Wu Q, Zhang YD, Amin MG et al (2014) Multi-task Bayesian compressive sensing exploiting intra-task dependency. IEEE Sign Process Lett 22(4):430–434
105.
Zurück zum Zitat Wu Q, Zhang YD, Amin MG et al (2015) High-resolution passive SAR imaging exploiting structured Bayesian compressive sensing. IEEE J Sel Top Sign Process 9(8):1484–1497CrossRef Wu Q, Zhang YD, Amin MG et al (2015) High-resolution passive SAR imaging exploiting structured Bayesian compressive sensing. IEEE J Sel Top Sign Process 9(8):1484–1497CrossRef
106.
Zurück zum Zitat Sundman D, Chatterjee S, Skoglund M (2014) Distributed greedy pursuit algorithms. Sign Process 105:298–315CrossRef Sundman D, Chatterjee S, Skoglund M (2014) Distributed greedy pursuit algorithms. Sign Process 105:298–315CrossRef
107.
Zurück zum Zitat Li G, Wimalajeewa T, Varshney PK (2015) Decentralized and collaborative subspace pursuit: a communication-efficient algorithm for joint sparsity pattern recovery with sensor networks. IEEE Trans Sign Process 64(3):556–566MathSciNetMATHCrossRef Li G, Wimalajeewa T, Varshney PK (2015) Decentralized and collaborative subspace pursuit: a communication-efficient algorithm for joint sparsity pattern recovery with sensor networks. IEEE Trans Sign Process 64(3):556–566MathSciNetMATHCrossRef
108.
109.
Zurück zum Zitat Blanchard JD, Cermak M, Hanle D et al (2014) Greedy algorithms for joint sparse recovery. IEEE Trans Sign Process 62(7):1694–1704MathSciNetMATHCrossRef Blanchard JD, Cermak M, Hanle D et al (2014) Greedy algorithms for joint sparse recovery. IEEE Trans Sign Process 62(7):1694–1704MathSciNetMATHCrossRef
110.
Zurück zum Zitat Hannak G, Perelli A, Goertz N et al (2018) Performance analysis of approximate message passing for distributed compressed sensing. IEEE J Sel Top Sign Process 12(5):857–870CrossRef Hannak G, Perelli A, Goertz N et al (2018) Performance analysis of approximate message passing for distributed compressed sensing. IEEE J Sel Top Sign Process 12(5):857–870CrossRef
111.
Zurück zum Zitat Dai W, Milenkovic O (2009) Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory 55(5):2230–2249MathSciNetMATHCrossRef Dai W, Milenkovic O (2009) Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory 55(5):2230–2249MathSciNetMATHCrossRef
112.
Zurück zum Zitat Feng JM, Lee CH (2013) Generalized subspace pursuit for signal recovery from multiple-measurement vectors. In: Proceedings of IEEE wireless communications and networking conference, pp 2874–2878 Feng JM, Lee CH (2013) Generalized subspace pursuit for signal recovery from multiple-measurement vectors. In: Proceedings of IEEE wireless communications and networking conference, pp 2874–2878
113.
Zurück zum Zitat Tropp J, Gilbert AC (2007) Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666MATHCrossRef Tropp J, Gilbert AC (2007) Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666MATHCrossRef
114.
Zurück zum Zitat Nagananda KG, Varshney PK (2017) On weak signal detection with compressive measurements. IEEE Signal Process Lett 25(1):125–129 Nagananda KG, Varshney PK (2017) On weak signal detection with compressive measurements. IEEE Signal Process Lett 25(1):125–129
Metadaten
Titel
Introduction
verfasst von
Xueqian Wang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4117-9_1