Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Andras Kemeny

Erschienen in: Autonomous Vehicles and Virtual Reality

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces the notion of 3D images, which are now well known to the public through the animated films of Pixar, and also 3D vision, for which stereoscopic glasses are required when watching movies, such as James Cameron’s Avatar and its sequels. It also introduces various 3D visual conflicts, such as those between the human eye’s accommodation and binocular vision, and the importance of other cues for the correct visual perception of distances, such as motion parallax. This latter is provided, for example, by head-tracking devices that are used with 3D VR helmets. This chapter further aims to bring to the reader’s attention the combination of these visual cues and their coordination with other vestibular and kinesthetic perceptual cues, which contribute to cybersickness. A short description of driving simulation is provided, which allows 3D immersive technology to be linked to driving and its use for self-driving, an emerging technology that in 2022 led to the advent of commercially available autonomous vehicles. The technologies required for driving simulation, namely virtual reality and augmented reality, are not only used to validate and verify connected and autonomous vehicle (CAV) systems but also integrated as onboard systems for in-vehicle infotainment and driver comfort. They may allow also for the avoidance of self-driving sickness, an already well-known symptom of car sickness experienced by automobile passengers. Finally, the following questions are also briefly examined: Why are autonomous vehicles only being proposed now, yet various large-scale experiments and demonstrations were presented all throughout the second half of the previous century, with hundreds of thousands of tested miles covered by automobile OEMs (e.g., Daimler) more than 30 years ago? Why is self-driving being proposed now? Is it for the sake of enhanced road safety and comfort, or is it a question of the advent of economically and technically mature technologies? Indeed, cameras, motion sensors, display, vision, and control systems, with the corresponding micro-electromechanical (MEM) systems, are also massively used in 3D immersion technology. All of these technologies are expected to foster the general use of autonomous vehicles and metaverses, with an overall social transformation of mobility and immersion, in a world controlled by big data and AI, thereby shaping our incoming future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Cline [2].
 
4
Microsoft’s HoloLens headsets are giving US Army testers nausea | Engadget, ‘Microsoft’s HoloLens headsets for the US Army have some teething troubles. Bloomberg and Insider say a recent unclassified report reveals the current Integrated Visual Augmentation System (IVAS) iteration is creating problems for soldiers in tests. Some testers suffered nausea, headaches and eyestrain while using the augmented reality goggles.
 
5
https://​www.​oxfordreference.​com/​view/​10.​1093/​oi/​authority.​2011080309534917​7. The real has concrete existence, while the virtual does not, but it is no less real for that fact.
 
6
Penrose [3].
 
7
Sherman and Craig [4].
 
8
Milgram and Kishino [5].
 
9
Kemeny et al. [6].
 
10
Evaluating perception in driving simulation experiments. Kemeny and Panerai [7].
 
11
Kemeny et al. [6].
 
12
Tresilian et al. [8].
 
13
Gogel et al. [9].
 
14
The perceived size is expressed as the product of the perceived distance and the size (in radian) of the retinal image (visual angle). See Gilinsky [10].
 
15
Hirsch et al. [11].
 
16
Coello and Grealy [12].
 
17
Willemsen et al. [13].
 
20
Meta (from the Greek μετά [meta], meaning “after” or “beyond”), which is a prefix meaning “more comprehensive” or “transcending.” See https://​en.​wikipedia.​org/​wiki/​Meta#cite_​note-1.
 
24
ThinkReality A3 Smart Glasses | Lenovo CA.
 
25
Sivak [14].
 
26
OEM AD objectives of fatalities per hour between 10−7 and 10−8.
 
28
Wachenfeld and Winner [15].
 
30
Mole et al. [16].
 
31
Dogan et al. [17].
 
32
Eriksson et al. [18].
 
33
Johansson et al. [19].
 
35
Weihrauch et al. [20].
 
37
Gibson [21].
 
38
Noy [22].
 
39
Diels [23].
 
40
Golding [24].
 
41
Keshavarz et al. [25].
 
42
Reason and Brand [26].
 
43
Stoffregen and Riccio [27].
 
44
Treisman [28].
 
45
Reason and Brand [26].
 
46
A robotaxi is a self-driving taxi. Cruise LLC obtained for ex. a Driverless Deployment Permit, granted by the California Public Utilities Commission, in June 2022, for driverless rides in San Francisco, https://​getcruise.​com/​news/​blog/​2022/​were-going-commercial/​, and Baidu and Pony.ai received permits to deploy driverless robotaxis in the Beijing Economic-Technological Development Area, https://​www.​autonews.​com/​china/​beijing-grants-new-robotaxi-permits.
 
47
Schmidt et al. [29].
 
48
Kemeny [30].
 
49
Coates et al. [31].
 
52
Riccio and Stoffregen [32].
 
53
Kemeny et al. [6].
 
54
Vienne et al. [33].
 
55
Yamaguchi [34].
 
56
Kemeny [7].
 
57
Strobl and Huesmann [35].
 
58
Sutherland [36].
 
59
Kemeny [37].
 
60
Nordmark et al. [38].
 
61
Drosdol et al. [39].
 
62
Schöner et al. [40].
 
63
Colombet et al. [41].
 
64
Kemeny and Panerai [7].
 
65
Kemeny [30].
 
66
Venrooij et al. [42], Max Planck Institute for Biological Cybernetics—CyberMotion Simulator (CMS)—Driving Simulation Association (driving-simulation.org).
 
67
Perroud et al. [43].
 
68
Gibson [21].
 
69
Kemeny [44].
 
70
Barthou et al. [45].
 
71
Berthoz et al. [46].
 
72
Kemeny [30].
 
73
De Winkel et al. [47].
 
74
Dong and Stoffregen [48].
 
75
Colombet et al. [49].
 
76
Kennedy [50].
 
77
Kuiper et al. [51].
 
78
Kemeny and Panerai [7].
 
80
Othman [52].
 
83
Reid Hoffmann, co-founder of LinkedIn, said the following: “If you are not embarrassed by the first version of your product, you’ve launched too late.” https://​www.​linkedin.​com/​pulse/​youre-embarrassed-youve-launched-too-late-dante-michael-panella.
 
84
SAE International (30 April 2021). “Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (SAE J3016)”: L1 driver in control using one steering or adaptive cruise control (ACC) driver-assistance system; L2 driver still in control, using both systems (hands off); L3 driver may not be in control (eyes off), the vehicle in conditional automation, with the expectation that the driver can take back control when requested; L4 has high automation, where the self-driving system can pull over by a guiding system (mind off); and L5 is full automation in all conditions.
 
85
Waymo CEO John Krafcik, who in 2019 said that “autonomy will always have constraints” (https://​www.​autoexpress.​co.​uk/​car-news/​105627/​autonomous-cars-will-never-exist-says-waymo-boss), left in 2021, Google Self-Driving Affiliate, considering that deploying the technology had proven harder than many technologists expected: https://​www.​wsj.​com/​articles/​waymo-ceo-john-krafcik-is-leaving-the-company-11617385836.
 
89
Merat et al. [54].
 
90
Dogan et al. [17].
 
91
Baumann et al. [55].
 
93
Yasuno et al. [56].
 
94
Kemeny [57].
 
Literatur
1.
Zurück zum Zitat Sadraei, E., Romano, R., Merat, N., de Pedro, J. G., Lee, Y. M., Madigan, R., Uzondu, W., Lyu, W., Tomlinson, A. (2020). Vehicle-pedestrian interaction: A distributed simulation study. In Proceedings of the driving simulation conference. Antibes, France (pp. 147–151). Sadraei, E., Romano, R., Merat, N., de Pedro, J. G., Lee, Y. M., Madigan, R., Uzondu, W., Lyu, W., Tomlinson, A. (2020). Vehicle-pedestrian interaction: A distributed simulation study. In Proceedings of the driving simulation conference. Antibes, France (pp. 147–151).
2.
Zurück zum Zitat Cline, E. (2011). Ready player one. Random House Publishers. Cline, E. (2011). Ready player one. Random House Publishers.
3.
Zurück zum Zitat Penrose, R. (2006). The road to reality. Random House. Penrose, R. (2006). The road to reality. Random House.
4.
Zurück zum Zitat Sherman, W. R., & Craig, A. B. (2003). Understanding virtual reality: Interface, application, and design. Morgan Kaufmann Publishers. Sherman, W. R., & Craig, A. B. (2003). Understanding virtual reality: Interface, application, and design. Morgan Kaufmann Publishers.
5.
Zurück zum Zitat Milgram, P., & Kishino, E. A. (1994). Taxonomy of mixed reality visual displays. In IEICE transactions on information and systems. Milgram, P., & Kishino, E. A. (1994). Taxonomy of mixed reality visual displays. In IEICE transactions on information and systems.
6.
Zurück zum Zitat Kemeny, A., Chardonnet, J.R., Colombet, F. (2020). Getting rid of cybersickness. In Virtual reality, augmented reality and simulators. Springer. Kemeny, A., Chardonnet, J.R., Colombet, F. (2020). Getting rid of cybersickness. In Virtual reality, augmented reality and simulators. Springer.
7.
Zurück zum Zitat Kemeny, A., & Panerai, F. (2003). Evaluating perception in driving simulation experiments. Trends in Cognitive Sciences, 7(1), 31–37.CrossRef Kemeny, A., & Panerai, F. (2003). Evaluating perception in driving simulation experiments. Trends in Cognitive Sciences, 7(1), 31–37.CrossRef
8.
Zurück zum Zitat Tresilian, J. R., Mon-Williams, M., & Kelly, B. M. (1999). Increasing confidence in vergence as a cue to distance. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1414), 39–44. Tresilian, J. R., Mon-Williams, M., & Kelly, B. M. (1999). Increasing confidence in vergence as a cue to distance. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1414), 39–44.
9.
Zurück zum Zitat Gogel, W., Tietz, J. D. (1973). Absolute motion parallax and the specific distance tendency. Perception & Psychophysics, 13(2), 284–292.CrossRef Gogel, W., Tietz, J. D. (1973). Absolute motion parallax and the specific distance tendency. Perception & Psychophysics, 13(2), 284–292.CrossRef
10.
Zurück zum Zitat Gilinsky, A. S. (1951). Perceived size and distance in visual space. Psychological Review, 58(6), 460.CrossRef Gilinsky, A. S. (1951). Perceived size and distance in visual space. Psychological Review, 58(6), 460.CrossRef
11.
Zurück zum Zitat Hirsch, M., Wetzstein, G., & Raskar, R. (2014). A compressive light field projection system. ACM Transactions on Graphics, 33(4). Hirsch, M., Wetzstein, G., & Raskar, R. (2014). A compressive light field projection system. ACM Transactions on Graphics, 33(4).
12.
Zurück zum Zitat Coello, Y., & Grealy, M. A. (1997). Effect of size and frame of visual field on the accuracy of an aiming movement. Perception, 26(3), 287–300. Coello, Y., & Grealy, M. A. (1997). Effect of size and frame of visual field on the accuracy of an aiming movement. Perception, 26(3), 287–300.
13.
Zurück zum Zitat Willemsen, P., Colton, M. B., Creem-Regehr, S. H., & Thompson, W. B. (2009). The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments. ACM Transactions on Applied Perception, 6(2), 1–14. Willemsen, P., Colton, M. B., Creem-Regehr, S. H., & Thompson, W. B. (2009). The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments. ACM Transactions on Applied Perception, 6(2), 1–14.
14.
Zurück zum Zitat Sivak, M. (1996). The information that drivers use: Is it indeed 90% visual? Perception, 25(9), 1081–1089.CrossRef Sivak, M. (1996). The information that drivers use: Is it indeed 90% visual? Perception, 25(9), 1081–1089.CrossRef
15.
Zurück zum Zitat Wachenfeld, W., & Winner, H. (2016). The release of autonomous vehicles. In Autonomous driving (pp. 425–449). Springer. Wachenfeld, W., & Winner, H. (2016). The release of autonomous vehicles. In Autonomous driving (pp. 425–449). Springer.
16.
Zurück zum Zitat Mole, C. D., Lappi, O., Giles, O., Markkula, G., Mars, F., Wilkie, R. M. (2019). Getting back into the loop: The perceptual-motor determinants of successful transitions out of automated driving. Human Factors, 61(7), 1037–1065. Mole, C. D., Lappi, O., Giles, O., Markkula, G., Mars, F., Wilkie, R. M. (2019). Getting back into the loop: The perceptual-motor determinants of successful transitions out of automated driving. Human Factors, 61(7), 1037–1065.
17.
Zurück zum Zitat Dogan, E., Rahal, M. C., Deborne, R., Delhomme, P., Kemeny, A., & Perrin, J. (2017). Transition of control in a partially automated vehicle: Effects of anticipation and non-driving-related task involvement. Transportation Research Part F: Traffic Psychology and Behaviour, 46, 205–215.CrossRef Dogan, E., Rahal, M. C., Deborne, R., Delhomme, P., Kemeny, A., & Perrin, J. (2017). Transition of control in a partially automated vehicle: Effects of anticipation and non-driving-related task involvement. Transportation Research Part F: Traffic Psychology and Behaviour, 46, 205–215.CrossRef
18.
Zurück zum Zitat Eriksson, A., Stanton, N. A. (2017). Takeover time in highly automated vehicles: Noncritical transitions to and from manual control. Human factors, 59(4), 689–705.CrossRef Eriksson, A., Stanton, N. A. (2017). Takeover time in highly automated vehicles: Noncritical transitions to and from manual control. Human factors, 59(4), 689–705.CrossRef
19.
Zurück zum Zitat Johansson, G., Rumar, K. (1971). Drivers’ brake reaction times. Human Factors, 13(1), 23–27.CrossRef Johansson, G., Rumar, K. (1971). Drivers’ brake reaction times. Human Factors, 13(1), 23–27.CrossRef
20.
Zurück zum Zitat Weihrauch, M., Meloeny, G. G., & Goesch, T. C. (1989). The first head-up display introduced by general motors (No. 890288). SAE Technical Paper. Weihrauch, M., Meloeny, G. G., & Goesch, T. C. (1989). The first head-up display introduced by general motors (No. 890288). SAE Technical Paper.
21.
Zurück zum Zitat Gibson, J. J. (1950). The perception of the visual world. Houghton-Mifflin. Gibson, J. J. (1950). The perception of the visual world. Houghton-Mifflin.
22.
Zurück zum Zitat Noy, I. (2000). Visual perception, age, and driving. In International encyclopedia of ergonomics and human factors-3 volume set (p. 348). Noy, I. (2000). Visual perception, age, and driving. In International encyclopedia of ergonomics and human factors-3 volume set (p. 348).
23.
Zurück zum Zitat Diels, C., & Bos, J. E. (2016). Self-driving carsickness. Applied Ergonomics, 53, 374–382.CrossRef Diels, C., & Bos, J. E. (2016). Self-driving carsickness. Applied Ergonomics, 53, 374–382.CrossRef
24.
Zurück zum Zitat Golding, J. F. (2016). Motion sickness. Handbook of Clinical Neurology, 137, 371–390. Golding, J. F. (2016). Motion sickness. Handbook of Clinical Neurology, 137, 371–390.
25.
Zurück zum Zitat Keshavarz, B., Riecke, B. E., Hettinger, L. J., & Campos, J. L. (2015). Vection and visually induced motion sickness: How are they related? Frontiers in Psychology, 6, 472. Keshavarz, B., Riecke, B. E., Hettinger, L. J., & Campos, J. L. (2015). Vection and visually induced motion sickness: How are they related? Frontiers in Psychology, 6, 472.
26.
Zurück zum Zitat Reason, J. T., & Brand, J. J. (1975). Motion sickness. Academic Press. Reason, J. T., & Brand, J. J. (1975). Motion sickness. Academic Press.
27.
Zurück zum Zitat Stoffregen, T. A., & Riccio, G. E. (1991). An ecological critique of the sensory conflict theory of motion sickness. Ecological Psychology, 3(3), 159–194.CrossRef Stoffregen, T. A., & Riccio, G. E. (1991). An ecological critique of the sensory conflict theory of motion sickness. Ecological Psychology, 3(3), 159–194.CrossRef
28.
Zurück zum Zitat Treisman, M. (1977). Motion sickness: An evolutionary hypothesis. Science, 197(4302), 493–495.CrossRef Treisman, M. (1977). Motion sickness: An evolutionary hypothesis. Science, 197(4302), 493–495.CrossRef
29.
Zurück zum Zitat Schmidt, E. A., Kuiper, O. X., Wolter, S., Diels, C., & Bos, J. E. (2020). An international survey on the incidence and modulating factors of carsickness. Transportation Research Part F: Traffic Psychology and Behaviour, 71, 76–87. Schmidt, E. A., Kuiper, O. X., Wolter, S., Diels, C., & Bos, J. E. (2020). An international survey on the incidence and modulating factors of carsickness. Transportation Research Part F: Traffic Psychology and Behaviour, 71, 76–87.
30.
Zurück zum Zitat Kemeny, A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–5). ACM. Kemeny, A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–5). ACM.
31.
Zurück zum Zitat Coates, N., Ehrette, M., Hayes, T., Blackham, G., Heidet, A., & Kemeny, A. (2002). Head-mounted display in driving simulation applications in CARDS (pp. 33–43). DSC. Coates, N., Ehrette, M., Hayes, T., Blackham, G., Heidet, A., & Kemeny, A. (2002). Head-mounted display in driving simulation applications in CARDS (pp. 33–43). DSC.
32.
Zurück zum Zitat Riccio, G. E., & Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology, 3(3), 195–240.CrossRef Riccio, G. E., & Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology, 3(3), 195–240.CrossRef
33.
Zurück zum Zitat Vienne, C., Sorin, L., Blondé, L., Huynh-Thu, Q., & Mamassian, P. (2014). Effect of the accommodation-vergence conflict on vergence eye movements. Vision Research, 100, 124–133. Vienne, C., Sorin, L., Blondé, L., Huynh-Thu, Q., & Mamassian, P. (2014). Effect of the accommodation-vergence conflict on vergence eye movements. Vision Research, 100, 124–133.
34.
Zurück zum Zitat Yamaguchi, M. (2016). Light-field and holographic three-dimensional displays. JOSA A, 33(12), 2348–2364.CrossRef Yamaguchi, M. (2016). Light-field and holographic three-dimensional displays. JOSA A, 33(12), 2348–2364.CrossRef
35.
Zurück zum Zitat Strobl, M., & Huesmann, A. (2004). High flexibility: An important issue for user studies in driving simulation (pp. 57–65). DSC 2004 Europe. Strobl, M., & Huesmann, A. (2004). High flexibility: An important issue for user studies in driving simulation (pp. 57–65). DSC 2004 Europe.
36.
Zurück zum Zitat Sutherland, I. E. (1968). A head-mounted three-dimensional display. In Proceedings of the December 9–11, 1968, fall joint computer conference, part I. Sutherland, I. E. (1968). A head-mounted three-dimensional display. In Proceedings of the December 9–11, 1968, fall joint computer conference, part I.
37.
Zurück zum Zitat Kemeny, A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–3D VR5). ACM. Kemeny, A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–3D VR5). ACM.
38.
Zurück zum Zitat Nordmark, S., Jansson, H., Palmkvist, G., Sehammar, H. (2004). The new VTI driving simulator. In Multipurpose moving base with high performance linear motion (pp. 45–55). DSC 2004 Europe. Nordmark, S., Jansson, H., Palmkvist, G., Sehammar, H. (2004). The new VTI driving simulator. In Multipurpose moving base with high performance linear motion (pp. 45–55). DSC 2004 Europe.
39.
Zurück zum Zitat Drosdol, J., Kading, W., & Panik, F. (1985). The Daimler-Benz driving simulator. Vehicle System Dynamics, 14(1–3), 86–90.CrossRef Drosdol, J., Kading, W., & Panik, F. (1985). The Daimler-Benz driving simulator. Vehicle System Dynamics, 14(1–3), 86–90.CrossRef
40.
Zurück zum Zitat Schöner, H.-P., Schmieder, H., Chardonnet, J.-R., Colombet, F., & Kemeny, A. (2022). Verification of stereoscopic projection systems for quantitative distance and speed perception tasks. In Driving simulation proceedings (pp. 79–91). Schöner, H.-P., Schmieder, H., Chardonnet, J.-R., Colombet, F., & Kemeny, A. (2022). Verification of stereoscopic projection systems for quantitative distance and speed perception tasks. In Driving simulation proceedings (pp. 79–91).
41.
Zurück zum Zitat Colombet, F., Perroud, B., Regnier, S., Kemeny, A. (2021). Contribution of stereoscopy and motion parallax for speed perception in driving simulation. In Driving simulation proceedings (pp. 91–97). Colombet, F., Perroud, B., Regnier, S., Kemeny, A. (2021). Contribution of stereoscopy and motion parallax for speed perception in driving simulation. In Driving simulation proceedings (pp. 91–97).
42.
Zurück zum Zitat Venrooij, J., Pretto, P., Katliar, M., Nooij, S. A., Nesti, A., Lächele, M., de Winkel, K., Cleij, D. Bülthoff, H. (2015). Perception-based motion cueing: Validation in driving simulation. In Proceedings of the driving simulation conference (pp. 153–161). Venrooij, J., Pretto, P., Katliar, M., Nooij, S. A., Nesti, A., Lächele, M., de Winkel, K., Cleij, D. Bülthoff, H. (2015). Perception-based motion cueing: Validation in driving simulation. In Proceedings of the driving simulation conference (pp. 153–161).
43.
Zurück zum Zitat Perroud, B., Perroud, B., Régnier, S., Kemeny, A., & Mérienne, F. (2019). Model of realism score for immersive VR systems. Transportation Research Part F: Traffic Psychology and Behaviour, 61, 238–251.CrossRef Perroud, B., Perroud, B., Régnier, S., Kemeny, A., & Mérienne, F. (2019). Model of realism score for immersive VR systems. Transportation Research Part F: Traffic Psychology and Behaviour, 61, 238–251.CrossRef
44.
Zurück zum Zitat Kemeny, A. (2009). Driving simulation for virtual testing and perception studies. In Proceedings of the driving simulation conference Europe (pp. 15–23). Kemeny, A. (2009). Driving simulation for virtual testing and perception studies. In Proceedings of the driving simulation conference Europe (pp. 15–23).
45.
Zurück zum Zitat Barthou, A., Kemeny, A., Reymond, G., Mérienne, F., & Berthoz, A. (2010). Driver trust and reliance on a navigation system: effect of graphical display. In Driving simulation conference. INRETS. Barthou, A., Kemeny, A., Reymond, G., Mérienne, F., & Berthoz, A. (2010). Driver trust and reliance on a navigation system: effect of graphical display. In Driving simulation conference. INRETS.
46.
Zurück zum Zitat Berthoz, A., Bles, W., Bülthoff, H., Grácio, B. C., Feenstra, P., Filliard, N., Hühne, R., Kemeny, Mayrhofer, M., Mulder, M., Nusseck, H. G., Pretto P., Reymond, G., Schlüsselberger, R.,Schwandtner, J., Teufel, H., Vailleau, B., van Paassen, M. M. R., Vidal, M., Wentink, M (2013). Motion scaling for high-performance driving simulators. IEEE Transactions on Human-Machine Systems, 43(3), 265–276.CrossRef Berthoz, A., Bles, W., Bülthoff, H., Grácio, B. C., Feenstra, P., Filliard, N., Hühne, R., Kemeny, Mayrhofer, M., Mulder, M., Nusseck, H. G., Pretto P., Reymond, G., Schlüsselberger, R.,Schwandtner, J., Teufel, H., Vailleau, B., van Paassen, M. M. R., Vidal, M., Wentink, M (2013). Motion scaling for high-performance driving simulators. IEEE Transactions on Human-Machine Systems, 43(3), 265–276.CrossRef
47.
Zurück zum Zitat de Winkel, K. N., Talsma, T. M., & Happee, R. (2022). A meta-analysis of simulator sickness as a function of simulator fidelity. Experimental Brain Research, 1–17. de Winkel, K. N., Talsma, T. M., & Happee, R. (2022). A meta-analysis of simulator sickness as a function of simulator fidelity. Experimental Brain Research, 1–17.
48.
Zurück zum Zitat Dong, X., & Stoffregen, T. A. (2010). Postural activity and motion sickness among drivers and passengers in a console video game. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 54, No. 18). SAGE Publications. Dong, X., & Stoffregen, T. A. (2010). Postural activity and motion sickness among drivers and passengers in a console video game. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 54, No. 18). SAGE Publications.
49.
Zurück zum Zitat Colombet, F., Paillot, D., Mérienne, F., Kemeny, A. (2010). Impact of geometric field of view on speed perception. In Driving simulation proceedings (pp. 69–79). Colombet, F., Paillot, D., Mérienne, F., Kemeny, A. (2010). Impact of geometric field of view on speed perception. In Driving simulation proceedings (pp. 69–79).
50.
Zurück zum Zitat Kennedy, R. S. (1995). Simulator sickness: Relationship of different symptoms to equipment configuration and safety. In Proceedings of the Driving simulation conference (Vol. 95, pp. 42–58). Kennedy, R. S. (1995). Simulator sickness: Relationship of different symptoms to equipment configuration and safety. In Proceedings of the Driving simulation conference (Vol. 95, pp. 42–58).
51.
Zurück zum Zitat Kuiper, O. X., Bos, J. E., Diels, C., & Cammaerts, K. (2019). Moving base driving simulators’ potential for carsickness research. Applied Ergonomics, 81, 102889. Kuiper, O. X., Bos, J. E., Diels, C., & Cammaerts, K. (2019). Moving base driving simulators’ potential for carsickness research. Applied Ergonomics, 81, 102889.
52.
Zurück zum Zitat Othman, K. (2021). Public acceptance and perception of autonomous vehicles: A comprehensive review. AI and Ethics, 1(3), 355–387.CrossRef Othman, K. (2021). Public acceptance and perception of autonomous vehicles: A comprehensive review. AI and Ethics, 1(3), 355–387.CrossRef
53.
Zurück zum Zitat Fang, Z., Wautier, D., Kemeny, A. (2022). FFT based optimal MCA for AD/ADAS driving tests. In Proceedings of the driving simulation conference 2022 Europe VR (pp. 119–126). Driving Simulation Association. Fang, Z., Wautier, D., Kemeny, A. (2022). FFT based optimal MCA for AD/ADAS driving tests. In Proceedings of the driving simulation conference 2022 Europe VR (pp. 119–126). Driving Simulation Association.
54.
Zurück zum Zitat Merat, N., Jamson, A. H., Lai, F. C., Daly, M., & Carsten, O. M. (2014). Transition to manual: Driver behaviour when resuming control from a highly automated vehicle. Transportation Research Part F: Traffic Psychology and Behaviour, 27, 274–282.CrossRef Merat, N., Jamson, A. H., Lai, F. C., Daly, M., & Carsten, O. M. (2014). Transition to manual: Driver behaviour when resuming control from a highly automated vehicle. Transportation Research Part F: Traffic Psychology and Behaviour, 27, 274–282.CrossRef
55.
Zurück zum Zitat Baumann, G., Jurisch, M. Holzapfel, C., Buck, C., Reuss, H.C. (2021). Driving simulator studies for kinetosis-reducing control of active chassis systems in autonomous vehicles. Driving Simulation Proceedings, 6, 51–58. Baumann, G., Jurisch, M. Holzapfel, C., Buck, C., Reuss, H.C. (2021). Driving simulator studies for kinetosis-reducing control of active chassis systems in autonomous vehicles. Driving Simulation Proceedings, 6, 51–58.
56.
Zurück zum Zitat Yasuno, Y., Kitahara, E., Takeuchi, E., Tsushima, M., Saitou, H., Imamura, M., Ueno, E. (2014). Nissan’s new high performance driving simulator for vehicle dynamics performance & man-machine interface studies. In New developments in driving simulation design and experiments: Driving simulation conference Europe 2014 proceedings (pp. 4–5). Yasuno, Y., Kitahara, E., Takeuchi, E., Tsushima, M., Saitou, H., Imamura, M., Ueno, E. (2014). Nissan’s new high performance driving simulator for vehicle dynamics performance & man-machine interface studies. In New developments in driving simulation design and experiments: Driving simulation conference Europe 2014 proceedings (pp. 4–5).
57.
Zurück zum Zitat Kemeny, A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–5). ACM Kemeny, A. (2014). From driving simulation to virtual reality. In Proceedings of the 2014 virtual reality international conference (pp. 1–5). ACM
Metadaten
Titel
Introduction
verfasst von
Andras Kemeny
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-45263-5_1

    Premium Partner