Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2012

01.07.2012

Inverse Identification of the Dynamic Recrystallization Parameters for AZ31 Magnesium Alloy Using BP Neural Network

verfasst von: Yan Lou, Wenhua Wu, Luoxing Li

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the dynamic recrystallization (DRX) parameters are of prime importance to improve the accuracy of the numerical simulation of hot forming processes for metals. However, it is difficult to determine the values of DRX parameters from experiments because of the influence of various factors, such as temperature, etc. In the present study, the DRX parameters for AZ31 magnesium alloy are identified by using the method of inverse analysis based on measured stress, BP neural network algorithm, genetic algorithm (GA), orthogonal experiment, and numerical simulation. Then, by applying the identified parameters in finite element analysis, the comparison between the numerically calculated and the experimental results is made to verify the correctness of the method. The results show that the numerically calculated stress, strain, recrystallized fraction, and average grain size valus are in good agreement with the experimental ones. These results demonstrate that the method of inverse analysis is a feasible and an effective tool for determination of the AZ31 DRX parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.W. Liu, D. Chen, Z.H. Chen, and H.G. Yan, Deformation Behavior of AZ31 Magnesium Alloy During Tension at Moderate Temperatures, J. Mater. Eng. Perform., 2009, 18(7), p 966–972CrossRef J.W. Liu, D. Chen, Z.H. Chen, and H.G. Yan, Deformation Behavior of AZ31 Magnesium Alloy During Tension at Moderate Temperatures, J. Mater. Eng. Perform., 2009, 18(7), p 966–972CrossRef
2.
Zurück zum Zitat J. Liu, Z. Cui, and C. Li, Modelling of Flow Stress Characterizing Dynamic Recrystallization for Magnesium Alloy AZ31B, Comput. Mater. Sci., 2008, 41, p 375–382CrossRef J. Liu, Z. Cui, and C. Li, Modelling of Flow Stress Characterizing Dynamic Recrystallization for Magnesium Alloy AZ31B, Comput. Mater. Sci., 2008, 41, p 375–382CrossRef
3.
Zurück zum Zitat A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207CrossRef A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207CrossRef
4.
Zurück zum Zitat Y. Zhang, X. Zeng, C. Lu, and W. Ding, Deformation Behavior and Dynamic Recrystallization of a Mg-Zn-Y-Zr Alloy, Mater. Sci. Eng. A, 2006, 428, p 91–99CrossRef Y. Zhang, X. Zeng, C. Lu, and W. Ding, Deformation Behavior and Dynamic Recrystallization of a Mg-Zn-Y-Zr Alloy, Mater. Sci. Eng. A, 2006, 428, p 91–99CrossRef
5.
Zurück zum Zitat X. Zhao, K. Zhang, X. Li et al., Deformation Behavior and Dynamic Recrystallization of Mg-Y-Nd-Gd-Zr Alloy, J Rare Earths, 2008, 26(6), p 846–850CrossRef X. Zhao, K. Zhang, X. Li et al., Deformation Behavior and Dynamic Recrystallization of Mg-Y-Nd-Gd-Zr Alloy, J Rare Earths, 2008, 26(6), p 846–850CrossRef
6.
Zurück zum Zitat T. Al-Samman and G. Gottetein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 2008, 490, p 411–420CrossRef T. Al-Samman and G. Gottetein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 2008, 490, p 411–420CrossRef
7.
Zurück zum Zitat S. Huang, Y. Yi, and C. Liu, Simulation of Dynamic Recrystallization for Aluminium Alloy 7050 Using Cellular Automation, J. Cent. South Univ. Technol., 2009, 16, p 18–24CrossRef S. Huang, Y. Yi, and C. Liu, Simulation of Dynamic Recrystallization for Aluminium Alloy 7050 Using Cellular Automation, J. Cent. South Univ. Technol., 2009, 16, p 18–24CrossRef
8.
Zurück zum Zitat A.D. Rollet and D. Raabe, A Hybrid Model for Mesoscopic Simulation of Recrystallization, Comput. Mater. Sci., 2001, 21, p 69–78CrossRef A.D. Rollet and D. Raabe, A Hybrid Model for Mesoscopic Simulation of Recrystallization, Comput. Mater. Sci., 2001, 21, p 69–78CrossRef
9.
Zurück zum Zitat C.H.J. Davies, Growth of Nuclei in a Cellular Automation Simulation of Recrystallization, Scripta Mater., 1997, 36, p 35–40CrossRef C.H.J. Davies, Growth of Nuclei in a Cellular Automation Simulation of Recrystallization, Scripta Mater., 1997, 36, p 35–40CrossRef
10.
Zurück zum Zitat N. Yazdipour, C.H.J. Davies, and P.D. Hodgson, Microstructural Modeling of Dynamic Recrystallization Using Irregular Cellular Automata, Comput. Mater. Sci., 2008, 44, p 566–576CrossRef N. Yazdipour, C.H.J. Davies, and P.D. Hodgson, Microstructural Modeling of Dynamic Recrystallization Using Irregular Cellular Automata, Comput. Mater. Sci., 2008, 44, p 566–576CrossRef
11.
Zurück zum Zitat Z.-y. Jin, J. Liu, Z.-s. Cui, and D.-l. Wei, Identification of Nucleation Parameter for Cellular Automation Model of Dynamic Recrystallization, Trans. Nonferrous Met. Soc. China, 2010, 20, p 458–464CrossRef Z.-y. Jin, J. Liu, Z.-s. Cui, and D.-l. Wei, Identification of Nucleation Parameter for Cellular Automation Model of Dynamic Recrystallization, Trans. Nonferrous Met. Soc. China, 2010, 20, p 458–464CrossRef
12.
Zurück zum Zitat H. Xiao and H.B. Xie, Simulation of Dynamic Recrystallization Using Cellular Automaton Method, J. Iron Steel Res., 2004, 11(2), p 42–45 H. Xiao and H.B. Xie, Simulation of Dynamic Recrystallization Using Cellular Automaton Method, J. Iron Steel Res., 2004, 11(2), p 42–45
13.
Zurück zum Zitat S. Ghosh, P. Gabane, A. Bose, and N. Chakraborti, Modeling of Recrystallization in Cold Rolled Copper Using Inverse Cellular Automata and Genetic Algorithm, Comput. Mater. Sci., 2009, 45, p 96–103CrossRef S. Ghosh, P. Gabane, A. Bose, and N. Chakraborti, Modeling of Recrystallization in Cold Rolled Copper Using Inverse Cellular Automata and Genetic Algorithm, Comput. Mater. Sci., 2009, 45, p 96–103CrossRef
14.
Zurück zum Zitat X.G. Fan, H. Yang, Z.C. Sun, and D.W. Zhang, Quantitative Analysis of Dynamic Recrystallization Behavior Using a Grain Boundary Evolution Based Kinetic Model, Mater. Sci. Eng. A, 2010, 527, p 5368–5377CrossRef X.G. Fan, H. Yang, Z.C. Sun, and D.W. Zhang, Quantitative Analysis of Dynamic Recrystallization Behavior Using a Grain Boundary Evolution Based Kinetic Model, Mater. Sci. Eng. A, 2010, 527, p 5368–5377CrossRef
15.
Zurück zum Zitat J. Kusiak, R. Kawalla, M. Pietrzyk, and H. Pircher, Inverse Analysis Applied to the Evaluation of Material Parameters in the History Dependent Flow Stress Equation in Hot Forming of Metals, J. Mater. Process. Technol., 1996, 60, p 455–461CrossRef J. Kusiak, R. Kawalla, M. Pietrzyk, and H. Pircher, Inverse Analysis Applied to the Evaluation of Material Parameters in the History Dependent Flow Stress Equation in Hot Forming of Metals, J. Mater. Process. Technol., 1996, 60, p 455–461CrossRef
16.
Zurück zum Zitat R. Forestier, E. Massoni, and Y. Chastel, Estimation of Constitutive Parameters Using an Inverse Method Coupled to a 3D Finite Element Software, J. Mater. Process. Technol., 2002, 125–126, p 594–601CrossRef R. Forestier, E. Massoni, and Y. Chastel, Estimation of Constitutive Parameters Using an Inverse Method Coupled to a 3D Finite Element Software, J. Mater. Process. Technol., 2002, 125–126, p 594–601CrossRef
17.
Zurück zum Zitat Z.-C. Lin, C.-C. Chen, and H.-H. Wang, The Determination of Material Strength Coefficient and Strain Hardening Constant by Inverse Method, J. Mater. Process. Technol., 2009, 209, p 2393–2401CrossRef Z.-C. Lin, C.-C. Chen, and H.-H. Wang, The Determination of Material Strength Coefficient and Strain Hardening Constant by Inverse Method, J. Mater. Process. Technol., 2009, 209, p 2393–2401CrossRef
18.
Zurück zum Zitat Z. Jin and Z. Cui, Investigation on Strain Dependence of Dynamic Recrystallization Behavior Using an Inverse Analysis Method, Mater. Sci. Eng. A, 2010, 527, p 3111–3119CrossRef Z. Jin and Z. Cui, Investigation on Strain Dependence of Dynamic Recrystallization Behavior Using an Inverse Analysis Method, Mater. Sci. Eng. A, 2010, 527, p 3111–3119CrossRef
19.
Zurück zum Zitat L. Zhang, L. Li, H. Ju, and B. Zhu, Inverse Identification of Interfacial Heat Transfer Coefficient Between the Casting and Metal Mold Using Neural Network, Energy Convers. Manag., 2010, 51, p 1898–1904CrossRef L. Zhang, L. Li, H. Ju, and B. Zhu, Inverse Identification of Interfacial Heat Transfer Coefficient Between the Casting and Metal Mold Using Neural Network, Energy Convers. Manag., 2010, 51, p 1898–1904CrossRef
20.
Zurück zum Zitat N. Kim and H. Choi, The Prediction of Deformation Behavior and Interfacial Friction Under Hot Working Conditions Using Inverse Analysis, J. Mater. Process. Technol., 2008, 208, p 211–221CrossRef N. Kim and H. Choi, The Prediction of Deformation Behavior and Interfacial Friction Under Hot Working Conditions Using Inverse Analysis, J. Mater. Process. Technol., 2008, 208, p 211–221CrossRef
21.
Zurück zum Zitat L.N. Smith, R.M. German, and M.L. Smith, A Neural Network Approach for Solution of the Inverse Problem for Selecting of Powder Metallurgy Materials, J. Mater. Process. Technol., 2002, 120, p 419–425CrossRef L.N. Smith, R.M. German, and M.L. Smith, A Neural Network Approach for Solution of the Inverse Problem for Selecting of Powder Metallurgy Materials, J. Mater. Process. Technol., 2002, 120, p 419–425CrossRef
22.
Zurück zum Zitat S. Deng and Y. Hwang, Applying Neural Networks to the Solution of Forward and Inverse Heat Conduction Problems, Int. J. Heat Mass Transfer, 2006, 49, p 4732–4750CrossRef S. Deng and Y. Hwang, Applying Neural Networks to the Solution of Forward and Inverse Heat Conduction Problems, Int. J. Heat Mass Transfer, 2006, 49, p 4732–4750CrossRef
23.
Zurück zum Zitat Y.C. Liang, D.P. Feng, G.R. Liu, X.W. Yang, and X. Han, Neural Identification of Rock Parameters Using Fuzzy Adaptive Learning Parameters, Comput. Struct., 2003, 81, p 2373–2382CrossRef Y.C. Liang, D.P. Feng, G.R. Liu, X.W. Yang, and X. Han, Neural Identification of Rock Parameters Using Fuzzy Adaptive Learning Parameters, Comput. Struct., 2003, 81, p 2373–2382CrossRef
24.
Zurück zum Zitat N. Huber and Ch. Tsakmakis, A Neural Network Tool for Identifying the Material Parameters of a Finite Deformation Viscoplasticity Model, Comput. Methods Appl. Mech. Eng., 2001, 191, p 353–384CrossRef N. Huber and Ch. Tsakmakis, A Neural Network Tool for Identifying the Material Parameters of a Finite Deformation Viscoplasticity Model, Comput. Methods Appl. Mech. Eng., 2001, 191, p 353–384CrossRef
25.
Zurück zum Zitat M. Qian and Z.X. Guo, Cellular Automata Simulation of Microstructural Evolution During Dynamic Recrystallization of an HY-100 Steel, Mater. Sci. Eng. A, 2004, 365, p 180–185CrossRef M. Qian and Z.X. Guo, Cellular Automata Simulation of Microstructural Evolution During Dynamic Recrystallization of an HY-100 Steel, Mater. Sci. Eng. A, 2004, 365, p 180–185CrossRef
26.
Zurück zum Zitat H.W. Lee and Y.-T. Im, Numerical Modeling of Dynamic Recrystallization During Nonisothermal Hot Compression by Cellular Automata and Finite Element Analysis, Int. J. Mech. Sci., 2010, 52, p 1277–1289CrossRef H.W. Lee and Y.-T. Im, Numerical Modeling of Dynamic Recrystallization During Nonisothermal Hot Compression by Cellular Automata and Finite Element Analysis, Int. J. Mech. Sci., 2010, 52, p 1277–1289CrossRef
27.
Zurück zum Zitat S.D. Georigiou, Orthogonal Designs for Computer Experiments, J. Stat. Plann. Infer., 2011, 141, p 1519–1525CrossRef S.D. Georigiou, Orthogonal Designs for Computer Experiments, J. Stat. Plann. Infer., 2011, 141, p 1519–1525CrossRef
28.
Zurück zum Zitat O.I. Adesola, Orthogonal Experiments in the Development of Carbon-Resin for Chloride Removal from Solutions, Stat. Methodol., 2009, 6(3), p 109–119CrossRef O.I. Adesola, Orthogonal Experiments in the Development of Carbon-Resin for Chloride Removal from Solutions, Stat. Methodol., 2009, 6(3), p 109–119CrossRef
29.
Zurück zum Zitat A.A. Javadi, R. Farmani, and T.P. Tan, A Hybrid Intelligent Genetic Algorithm, Adv. Eng. Inform., 2005, 19, p 255–262CrossRef A.A. Javadi, R. Farmani, and T.P. Tan, A Hybrid Intelligent Genetic Algorithm, Adv. Eng. Inform., 2005, 19, p 255–262CrossRef
30.
Zurück zum Zitat S.-F. Hwang and R.-S. He, A Hybrid Real-Parameter Genetic Algorithm for Function Optimization, Adv. Eng. Inform., 2006, 20(1), p 7–21CrossRef S.-F. Hwang and R.-S. He, A Hybrid Real-Parameter Genetic Algorithm for Function Optimization, Adv. Eng. Inform., 2006, 20(1), p 7–21CrossRef
31.
Zurück zum Zitat Z. Jin, Modeling and Simulation of Dynamic Recrystallization for Hot Deformed Low Carbon Steel by Inverse Analysis Method, Shanghai Jiao Tong University, 2010 Z. Jin, Modeling and Simulation of Dynamic Recrystallization for Hot Deformed Low Carbon Steel by Inverse Analysis Method, Shanghai Jiao Tong University, 2010
32.
Zurück zum Zitat M. Kassner and M. Perez-Prado, Five-Power-Law Creep in Single Phase Metals and Alloys, Prog. Mater. Sci., 2000, 45, p 91–102 M. Kassner and M. Perez-Prado, Five-Power-Law Creep in Single Phase Metals and Alloys, Prog. Mater. Sci., 2000, 45, p 91–102
Metadaten
Titel
Inverse Identification of the Dynamic Recrystallization Parameters for AZ31 Magnesium Alloy Using BP Neural Network
verfasst von
Yan Lou
Wenhua Wu
Luoxing Li
Publikationsdatum
01.07.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-011-0015-0

Weitere Artikel der Ausgabe 7/2012

Journal of Materials Engineering and Performance 7/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.