Skip to main content

2019 | OriginalPaper | Buchkapitel

Investigating the Benefits of Exploiting Incremental Learners Under Active Learning Scheme

verfasst von : Stamatis Karlos, Vasileios G. Kanas, Nikos Fazakis, Christos Aridas, Sotiris Kotsiantis

Erschienen in: Artificial Intelligence Applications and Innovations

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper examines the efficacy of incrementally updateable learners under the Active Learning concept, a well-known iterative semi-supervised scheme where the initially collected instances, usually a few, are augmented by the combined actions of both the chosen base learner and the human factor. Instead of exploiting conventional batch-mode learners and refining them at the end of each iteration, we introduce the use of incremental ones, so as to apply favorable query strategies and detect the most informative instances before they are provided to the human factor for annotating them. Our assumption about the benefits of this kind of combination into a suitable framework is verified by the achieved classification accuracy against the baseline strategy of Random Sampling and the corresponding learning behavior of the batch-mode approaches over numerous benchmark datasets, under the pool-based scenario. The measured time reveals also a faster response of the proposed framework, since each constructed classification model into the core of Active Learning concept is built partially, updating the existing information without ignoring the already processed data. Finally, all the conducted comparisons are presented along with the appropriate statistical testing processes, so as to verify our claim.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, pp. 71–80 (2000) Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, pp. 71–80 (2000)
3.
Zurück zum Zitat Mahmoud, M.: Semi-supervised keyword spotting in Arabic speech using self-training ensembles (2015) Mahmoud, M.: Semi-supervised keyword spotting in Arabic speech using self-training ensembles (2015)
4.
Zurück zum Zitat Schwenker, F., Trentin, E.: Pattern classification and clustering: A review of partially supervised learning approaches. Pattern Recogn. Lett. 37, 4–14 (2014)CrossRef Schwenker, F., Trentin, E.: Pattern classification and clustering: A review of partially supervised learning approaches. Pattern Recogn. Lett. 37, 4–14 (2014)CrossRef
5.
Zurück zum Zitat Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Yu, P.S.: Active learning: a survey. In: Data Classification: Algorithms and Applications, pp. 571–605 (2014)CrossRef Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Yu, P.S.: Active learning: a survey. In: Data Classification: Algorithms and Applications, pp. 571–605 (2014)CrossRef
6.
Zurück zum Zitat Zhang, Z., Cummins, N., Schuller, B.: Advanced data exploitation in speech analysis. IEEE Signal Process. Mag. 34, 107–129 (2017)CrossRef Zhang, Z., Cummins, N., Schuller, B.: Advanced data exploitation in speech analysis. IEEE Signal Process. Mag. 34, 107–129 (2017)CrossRef
7.
Zurück zum Zitat Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and imbalance: an overview. Prog. Artif. Intell. 1, 89–101 (2012)CrossRef Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and imbalance: an overview. Prog. Artif. Intell. 1, 89–101 (2012)CrossRef
8.
Zurück zum Zitat Dou, J., Li, J., Qin, Q., Tu, Z.: Moving object detection based on incremental learning low rank representation and spatial constraint. Neurocomputing. 168, 382–400 (2015)CrossRef Dou, J., Li, J., Qin, Q., Tu, Z.: Moving object detection based on incremental learning low rank representation and spatial constraint. Neurocomputing. 168, 382–400 (2015)CrossRef
9.
Zurück zum Zitat Bai, X., Ren, P., Zhang, H., Zhou, J.: An incremental structured part model for object recognition. Neurocomputing. 154, 189–199 (2015)CrossRef Bai, X., Ren, P., Zhang, H., Zhou, J.: An incremental structured part model for object recognition. Neurocomputing. 154, 189–199 (2015)CrossRef
10.
Zurück zum Zitat Tasar, O., Tarabalka, Y., Alliez, P.: Incremental learning for semantic segmentation of large-scale remote sensing data. CoRR. abs/1810.1 (2018) Tasar, O., Tarabalka, Y., Alliez, P.: Incremental learning for semantic segmentation of large-scale remote sensing data. CoRR. abs/1810.1 (2018)
11.
Zurück zum Zitat Ristin, M., Guillaumin, M., Gall, J., Van Gool, L.: Incremental learning of random forests for large-scale image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38, 490–503 (2016)CrossRef Ristin, M., Guillaumin, M., Gall, J., Van Gool, L.: Incremental learning of random forests for large-scale image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38, 490–503 (2016)CrossRef
12.
Zurück zum Zitat Shin, G., Yooun, H., Shin, D., Shin, D.: Incremental learning method for cyber intelligence, surveillance, and reconnaissance in closed military network using converged IT techniques. Soft. Comput. 22, 6835–6844 (2018)CrossRef Shin, G., Yooun, H., Shin, D., Shin, D.: Incremental learning method for cyber intelligence, surveillance, and reconnaissance in closed military network using converged IT techniques. Soft. Comput. 22, 6835–6844 (2018)CrossRef
13.
Zurück zum Zitat Dou, J., Li, J., Qin, Q., Tu, Z.: Robust visual tracking based on incremental discriminative projective non-negative matrix factorization. Neurocomputing 166, 210–228 (2015)CrossRef Dou, J., Li, J., Qin, Q., Tu, Z.: Robust visual tracking based on incremental discriminative projective non-negative matrix factorization. Neurocomputing 166, 210–228 (2015)CrossRef
14.
Zurück zum Zitat Wibisono, A., Jatmiko, W., Wisesa, H.A., Hardjono, B., Mursanto, P.: Traffic big data prediction and visualization using fast incremental model trees-drift detection (FIMT-DD). Knowl. Based Syst. 93, 33–46 (2016)CrossRef Wibisono, A., Jatmiko, W., Wisesa, H.A., Hardjono, B., Mursanto, P.: Traffic big data prediction and visualization using fast incremental model trees-drift detection (FIMT-DD). Knowl. Based Syst. 93, 33–46 (2016)CrossRef
15.
Zurück zum Zitat Wang, M., Wang, C.: Learning from adaptive neural dynamic surface control of strict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 1247–1259 (2015)MathSciNetCrossRef Wang, M., Wang, C.: Learning from adaptive neural dynamic surface control of strict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 1247–1259 (2015)MathSciNetCrossRef
16.
Zurück zum Zitat Zhang, H., Wu, P., Beck, A., Zhang, Z., Gao, X.: Adaptive incremental learning of image semantics with application to social robot. Neurocomputing 173, 93–101 (2016)CrossRef Zhang, H., Wu, P., Beck, A., Zhang, Z., Gao, X.: Adaptive incremental learning of image semantics with application to social robot. Neurocomputing 173, 93–101 (2016)CrossRef
17.
Zurück zum Zitat Khan, S., Wollherr, D.: IBuILD: incremental bag of binary words for appearance based loop closure detection. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5441–5447. IEEE (2015) Khan, S., Wollherr, D.: IBuILD: incremental bag of binary words for appearance based loop closure detection. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5441–5447. IEEE (2015)
18.
Zurück zum Zitat Saveriano, M., An, S., Lee, D.: Incremental kinesthetic teaching of end-effector and null-space motion primitives. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3570–3575. IEEE (2015) Saveriano, M., An, S., Lee, D.: Incremental kinesthetic teaching of end-effector and null-space motion primitives. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3570–3575. IEEE (2015)
19.
20.
Zurück zum Zitat Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition. In: Blunsom, P., et al. (eds.) Proceedings of the 2nd Workshop on Representation Learning for NLP, Rep4NLP@ACL 2017, Vancouver, Canada, 3 August 2017, pp. 252–256. Association for Computational Linguistics (2017) Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition. In: Blunsom, P., et al. (eds.) Proceedings of the 2nd Workshop on Representation Learning for NLP, Rep4NLP@ACL 2017, Vancouver, Canada, 3 August 2017, pp. 252–256. Association for Computational Linguistics (2017)
21.
Zurück zum Zitat Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018) Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018)
22.
Zurück zum Zitat Liu, Y., et al.: Generative adversarial active learning for unsupervised outlier detection. CoRR. abs/1809.1 (2018) Liu, Y., et al.: Generative adversarial active learning for unsupervised outlier detection. CoRR. abs/1809.1 (2018)
23.
Zurück zum Zitat Fang, M., Li, Y., Cohn, T.: Learning how to active learn: a deep reinforcement learning approach. In: Palmer, M., Hwa, R., Riedel, S. (eds.) EMNLP 2017, Copenhagen, Denmark, pp. 595–605. Association for Computational Linguistics (2017) Fang, M., Li, Y., Cohn, T.: Learning how to active learn: a deep reinforcement learning approach. In: Palmer, M., Hwa, R., Riedel, S. (eds.) EMNLP 2017, Copenhagen, Denmark, pp. 595–605. Association for Computational Linguistics (2017)
24.
Zurück zum Zitat Contardo, G., Denoyer, L., Artières, T.: A meta-learning approach to one-step active-learning. In: Brazdil, P., Vanschoren, J., Hutter, F., and Hoos, H. (eds.) AutoML@PKDD/ECML, pp. 28–40. CEUR-WS.org (2017) Contardo, G., Denoyer, L., Artières, T.: A meta-learning approach to one-step active-learning. In: Brazdil, P., Vanschoren, J., Hutter, F., and Hoos, H. (eds.) AutoML@PKDD/ECML, pp. 28–40. CEUR-WS.org (2017)
25.
Zurück zum Zitat Krempl, G., Kottke, D., Lemaire, V.: Optimised probabilistic active learning (OPAL): for fast, non-myopic, cost-sensitive active classification. Mach. Learn. 100, 449–476 (2015)MathSciNetCrossRef Krempl, G., Kottke, D., Lemaire, V.: Optimised probabilistic active learning (OPAL): for fast, non-myopic, cost-sensitive active classification. Mach. Learn. 100, 449–476 (2015)MathSciNetCrossRef
26.
Zurück zum Zitat Zhang, T.: Solving large scale linear prediction problems using stochastic gradient descent Algorithms. In: ICML, pp. 919–926 (2004) Zhang, T.: Solving large scale linear prediction problems using stochastic gradient descent Algorithms. In: ICML, pp. 919–926 (2004)
27.
Zurück zum Zitat Settles, B.: Active Learning. Morgan & Claypool Publishers, San Rafael (2012)MATH Settles, B.: Active Learning. Morgan & Claypool Publishers, San Rafael (2012)MATH
28.
Zurück zum Zitat Sharma, M., Bilgic, M.: Evidence-based uncertainty sampling for active learning. Data Min. Knowl. Discov. 31, 164–202 (2017)MathSciNetCrossRef Sharma, M., Bilgic, M.: Evidence-based uncertainty sampling for active learning. Data Min. Knowl. Discov. 31, 164–202 (2017)MathSciNetCrossRef
29.
Zurück zum Zitat Tsuruoka, Y., Tsujii, J., Ananiadou, S.: Stochastic gradient descent training for L1-regularized log-linear models with cumulative penalty. In: ACL/IJCNLP, pp. 477–485 (2009) Tsuruoka, Y., Tsujii, J., Ananiadou, S.: Stochastic gradient descent training for L1-regularized log-linear models with cumulative penalty. In: ACL/IJCNLP, pp. 477–485 (2009)
30.
Zurück zum Zitat Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B. 67, 301–320 (2005)MathSciNetCrossRef Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B. 67, 301–320 (2005)MathSciNetCrossRef
31.
Zurück zum Zitat Yang, Y.-Y., Lee, S.-C., Chung, Y.-A., Wu, T.-E., Chen, S.-A., Lin, H.-T.: libact: Pool-based active learning in Python (2017) Yang, Y.-Y., Lee, S.-C., Chung, Y.-A., Wu, T.-E., Chen, S.-A., Lin, H.-T.: libact: Pool-based active learning in Python (2017)
32.
Zurück zum Zitat Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: CoRR abs/1309.0238 (2013) Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: CoRR abs/1309.0238 (2013)
35.
Zurück zum Zitat Xiang, Z., Xiao, Z., Wang, D., Georges, H.M.: Incremental semi-supervised kernel construction with self-organizing incremental neural network and application in intrusion detection. J. Intell. Fuzzy Syst. 31, 815–823 (2016)CrossRef Xiang, Z., Xiao, Z., Wang, D., Georges, H.M.: Incremental semi-supervised kernel construction with self-organizing incremental neural network and application in intrusion detection. J. Intell. Fuzzy Syst. 31, 815–823 (2016)CrossRef
36.
Zurück zum Zitat Lin, Y., Jiang, X., Li, Y., Zhang, J., Cai, G.: Semi-supervised collective extraction of opinion target and opinion word from online reviews based on active labeling. J. Intell. Fuzzy Syst. 33, 3949–3958 (2017)CrossRef Lin, Y., Jiang, X., Li, Y., Zhang, J., Cai, G.: Semi-supervised collective extraction of opinion target and opinion word from online reviews based on active labeling. J. Intell. Fuzzy Syst. 33, 3949–3958 (2017)CrossRef
37.
Zurück zum Zitat Akusok, A., Eirola, E., Miche, Y., Gritsenko, A.: Advanced Query Strategies for Active Learning with Extreme Learning Machine. In: ESANN, pp. 105–110 (2017) Akusok, A., Eirola, E., Miche, Y., Gritsenko, A.: Advanced Query Strategies for Active Learning with Extreme Learning Machine. In: ESANN, pp. 105–110 (2017)
38.
Zurück zum Zitat Wang, Y., Singh, A.: Noise-adaptive margin-based active learning for multi-dimensional data. CoRR. abs/1406.5 (2014) Wang, Y., Singh, A.: Noise-adaptive margin-based active learning for multi-dimensional data. CoRR. abs/1406.5 (2014)
39.
Zurück zum Zitat Hsu, W.-N., Lin, H.-T.: Active learning by learning. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA, pp. 2659–2665. AAAI Press (2015) Hsu, W.-N., Lin, H.-T.: Active learning by learning. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA, pp. 2659–2665. AAAI Press (2015)
40.
Zurück zum Zitat Zhao, J., Liu, N., Malov, A.: Safe semi-supervised classification algorithm combined with active learning sampling strategy. J. Intell. Fuzzy Syst. 35, 4001–4010 (2018)CrossRef Zhao, J., Liu, N., Malov, A.: Safe semi-supervised classification algorithm combined with active learning sampling strategy. J. Intell. Fuzzy Syst. 35, 4001–4010 (2018)CrossRef
Metadaten
Titel
Investigating the Benefits of Exploiting Incremental Learners Under Active Learning Scheme
verfasst von
Stamatis Karlos
Vasileios G. Kanas
Nikos Fazakis
Christos Aridas
Sotiris Kotsiantis
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-19823-7_3

Premium Partner