Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Investigating the effect of modulation depth of refractive index in cascaded FBGs for dual sensing of strain and temperature

verfasst von: Jasjot Kaur Sahota, Divya Dhawan, Neena Gupta

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Simultaneous measurement of strain and temperature is crucial for various applications that operate in diverse environments. Fiber Bragg gratings, known for their sensitivity to both strain and temperature, can serve as effective sensors for such simultaneous measurements. However, achieving discrimination between strain and temperature in FBG sensors requires the incorporation of a distinct mechanism in their design. This present a novel approach to dual sensing by exploring the impact of modulation depth of refractive index in cascaded FBGs. Modulation depth of refractive index is a significant spectral parameter of FBGs, influencing the grating’s strength. By cascading two gratings with different modulation depths, the reflection spectrum exhibits two peaks, and their amplitudes are influenced by the modulation depth. Notably, the proposed sensor design eliminates the need for complicated packaging, which is often time-consuming and expensive. The study includes a simulation analysis of the proposed sensor, consisting of two FBGs with distinct modulation depths of refractive index. This technique demonstrates a linear variation in both Bragg wavelength and normalized peak difference (M) in response to changes in strain and temperature. The obtained strain and temperature sensitivities in this study were 1.19 pm/με and 11.4 pm/°C, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agarwal, S., Mishra, V.: Characterization of fiber Bragg grating for maximum reflectivity based on modulation depth of refractive index. Opt. Int. J. Light Electron Opt. 125(18), 5192–5195 (2014) Agarwal, S., Mishra, V.: Characterization of fiber Bragg grating for maximum reflectivity based on modulation depth of refractive index. Opt. Int. J. Light Electron Opt. 125(18), 5192–5195 (2014)
Zurück zum Zitat Akaya, N., Oares, M.A.G.U.S., Anaka, S.A.T.: Simultaneous multi-point measurement of strain and temperature utilizing Fabry–Perot interferometric sensors composed of low reflective fiber Bragg gratings in a polarization-maintaining fiber. Opt. Express 28(9), 13104–13115 (2020)ADS Akaya, N., Oares, M.A.G.U.S., Anaka, S.A.T.: Simultaneous multi-point measurement of strain and temperature utilizing Fabry–Perot interferometric sensors composed of low reflective fiber Bragg gratings in a polarization-maintaining fiber. Opt. Express 28(9), 13104–13115 (2020)ADS
Zurück zum Zitat Ali, M.M., Islam, M.R., Lim, K.S., Gunawardena, D.S., Yang, H.Z., Ahmad, H.: PCF-cavity FBG Fabry–Perot resonator for simultaneous measurement of pressure and temperature. IEEE Sens. J. 15(12), 6921–6925 (2015)ADS Ali, M.M., Islam, M.R., Lim, K.S., Gunawardena, D.S., Yang, H.Z., Ahmad, H.: PCF-cavity FBG Fabry–Perot resonator for simultaneous measurement of pressure and temperature. IEEE Sens. J. 15(12), 6921–6925 (2015)ADS
Zurück zum Zitat Arslan, M.M., Bayrak, G.: Temperature compensation of FBG sensors via sensor packaging approach for harsh environmental applications. J. Sci. 35(4), 1471–1482 (2022) Arslan, M.M., Bayrak, G.: Temperature compensation of FBG sensors via sensor packaging approach for harsh environmental applications. J. Sci. 35(4), 1471–1482 (2022)
Zurück zum Zitat Ashry, I., Elrashidi, A., Mahros, A., Alhaddad, M., Elleithy, K.: Investigating the performance of apodized fiber Bragg gratings for sensing applications In: Proceedings of 2014 zone 1 conference of the American society for engineering education (ASEE Zone 1), pp. 1–5. (2014) Ashry, I., Elrashidi, A., Mahros, A., Alhaddad, M., Elleithy, K.: Investigating the performance of apodized fiber Bragg gratings for sensing applications In: Proceedings of 2014 zone 1 conference of the American society for engineering education (ASEE Zone 1), pp. 1–5. (2014)
Zurück zum Zitat Au, H.Y., Khijwania, S.K., Fu, H.Y., Chung, W.H., Tam, H.Y.: Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range. J. Light. Technol. 29(11), 1714–1720 (2011)ADS Au, H.Y., Khijwania, S.K., Fu, H.Y., Chung, W.H., Tam, H.Y.: Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range. J. Light. Technol. 29(11), 1714–1720 (2011)ADS
Zurück zum Zitat Basumallick, N., Biswas, P., Dasgupta, K., Bandyopadhyay, S.: Design optimization of fiber Bragg grating accelerometer for maximum sensitivity. Sens. Actuators A Phys. 194, 31–39 (2013) Basumallick, N., Biswas, P., Dasgupta, K., Bandyopadhyay, S.: Design optimization of fiber Bragg grating accelerometer for maximum sensitivity. Sens. Actuators A Phys. 194, 31–39 (2013)
Zurück zum Zitat Campanella, C.E., Cuccovillo, A., Campanella, C., Yurt, A., Passaro, V.M.N.: Fibre Bragg grating based strain sensors : review of technology and applications. Sensors 18(3115), 1–27 (2018) Campanella, C.E., Cuccovillo, A., Campanella, C., Yurt, A., Passaro, V.M.N.: Fibre Bragg grating based strain sensors : review of technology and applications. Sensors 18(3115), 1–27 (2018)
Zurück zum Zitat Caucheteur, C., Chah, K., Lhomme, F., Blondel, M., Megret, P.: Characterization of twin Bragg gratings for sensor application. In: Proc. of SPIE. 5459, 89–100 (2004) Caucheteur, C., Chah, K., Lhomme, F., Blondel, M., Megret, P.: Characterization of twin Bragg gratings for sensor application. In: Proc. of SPIE. 5459, 89–100 (2004)
Zurück zum Zitat Chah, K., Kinet, D., Caucheteur, C.: Negative axial strain sensitivity in gold-coated eccentric fiber Bragg gratings. Nat. Publ. Gr. 6, 1–6 (2016) Chah, K., Kinet, D., Caucheteur, C.: Negative axial strain sensitivity in gold-coated eccentric fiber Bragg gratings. Nat. Publ. Gr. 6, 1–6 (2016)
Zurück zum Zitat Chang, H., Yeh, C., Huang, C., Fu, M., Chow, C., Liu, W.: In-fiber long-period grating and fiber Bragg grating-based sensor for simultaneously monitoring remote temperature and stress. Sens. Mater. 30(1), 23–32 (2018) Chang, H., Yeh, C., Huang, C., Fu, M., Chow, C., Liu, W.: In-fiber long-period grating and fiber Bragg grating-based sensor for simultaneously monitoring remote temperature and stress. Sens. Mater. 30(1), 23–32 (2018)
Zurück zum Zitat Dhingra, I., Kaur, G., Kaler, R.S.: Design and analysis of fiber Bragg grating sensor to monitor strain and temperature for structural health monitoring. Opt. Quantum Electron. 53(11), 1–9 (2021) Dhingra, I., Kaur, G., Kaler, R.S.: Design and analysis of fiber Bragg grating sensor to monitor strain and temperature for structural health monitoring. Opt. Quantum Electron. 53(11), 1–9 (2021)
Zurück zum Zitat Ding, Z., Tan, Z., Gao, Y., Wu, Y., Yin, B.: Strain and temperature discrimination using a fiber Bragg grating concatenated with PANDA polarization-maintaining fiber in a fiber loop mirror. Opt. Int. J. Light Electron Opt. 221, 165352, 1–8 (2020) Ding, Z., Tan, Z., Gao, Y., Wu, Y., Yin, B.: Strain and temperature discrimination using a fiber Bragg grating concatenated with PANDA polarization-maintaining fiber in a fiber loop mirror. Opt. Int. J. Light Electron Opt. 221, 165352, 1–8 (2020)
Zurück zum Zitat Du, W., Tao, X., Tam, H.: Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol. Lett. 11(1), 105–107 (1999a)ADS Du, W., Tao, X., Tam, H.: Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol. Lett. 11(1), 105–107 (1999a)ADS
Zurück zum Zitat Du, W., Tao, X., Tam, H.Y.: Temperature independent strain measurement with a fiber grating tapered cavity sensor. IEEE Photonics Technol. Lett. 11(5), 596–598 (1999b)ADS Du, W., Tao, X., Tam, H.Y.: Temperature independent strain measurement with a fiber grating tapered cavity sensor. IEEE Photonics Technol. Lett. 11(5), 596–598 (1999b)ADS
Zurück zum Zitat Elsmann, T., Habisreuther, T., Graf, A., Rothhardt, M., Schmidt, M.A.: First-order sapphire fiber Bragg gratings for high temperature sensing. Appl. Therm. Eng. 91(5), 53–58 (2015) Elsmann, T., Habisreuther, T., Graf, A., Rothhardt, M., Schmidt, M.A.: First-order sapphire fiber Bragg gratings for high temperature sensing. Appl. Therm. Eng. 91(5), 53–58 (2015)
Zurück zum Zitat Erdogan, T.: Fiber grating spectra. J. Light. Technol. 15(8), 1277–1294 (1997)ADS Erdogan, T.: Fiber grating spectra. J. Light. Technol. 15(8), 1277–1294 (1997)ADS
Zurück zum Zitat Feng, Z., Cheng, Y., Chen, M., Yuan, L., Hong, D., Li, L.: Temperature-compensated multi-point strain sensing based on cascaded FBG and optical FMCW interferometry. Sensors 22(3970), 1–12 (2022) Feng, Z., Cheng, Y., Chen, M., Yuan, L., Hong, D., Li, L.: Temperature-compensated multi-point strain sensing based on cascaded FBG and optical FMCW interferometry. Sensors 22(3970), 1–12 (2022)
Zurück zum Zitat Ferreira, L., Farahi, F.: Simultaneous measurement of strain and temperature using interferometrically simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors. Opt. Eng. 39(8), 2226–2234 (2000)ADS Ferreira, L., Farahi, F.: Simultaneous measurement of strain and temperature using interferometrically simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors. Opt. Eng. 39(8), 2226–2234 (2000)ADS
Zurück zum Zitat Gao, X., et al.: A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt. Commun.Commun. 454, 1–5 (2020) Gao, X., et al.: A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt. Commun.Commun. 454, 1–5 (2020)
Zurück zum Zitat Gholampour, M., Mansoursamaei, M., Malakzadeh, A.: Comparison of FWHM and peak power techniques for simultaneous measurement of strain and temperature in FBG. Opt. Quantum Electron. 55(117), 1–9 (2023) Gholampour, M., Mansoursamaei, M., Malakzadeh, A.: Comparison of FWHM and peak power techniques for simultaneous measurement of strain and temperature in FBG. Opt. Quantum Electron. 55(117), 1–9 (2023)
Zurück zum Zitat Guan, Z., Member, S., Chen, D., He, S., Member, S.: Coherence multiplexing of distributed sensors based on pairs of fiber Bragg gratings of low reflectivity. J. Light. Technol. 25(8), 2143–2148 (2007)ADS Guan, Z., Member, S., Chen, D., He, S., Member, S.: Coherence multiplexing of distributed sensors based on pairs of fiber Bragg gratings of low reflectivity. J. Light. Technol. 25(8), 2143–2148 (2007)ADS
Zurück zum Zitat Guo, G.: Superstructure fiber Bragg gratings for simultaneous temperature and strain measurement. Opt. Int. J. Light Electron Opt. 182, 331–340 (2019) Guo, G.: Superstructure fiber Bragg gratings for simultaneous temperature and strain measurement. Opt. Int. J. Light Electron Opt. 182, 331–340 (2019)
Zurück zum Zitat Hafizi, Z.M., Vorathin, E., Aizzuddin, A.M., Lim, K.S.: High-resolution fibre Bragg grating (FBG) pressure transducer for low-pressure detection. Int. J. Automot. Mech. Eng. 16(2), 6783–6795 (2019) Hafizi, Z.M., Vorathin, E., Aizzuddin, A.M., Lim, K.S.: High-resolution fibre Bragg grating (FBG) pressure transducer for low-pressure detection. Int. J. Automot. Mech. Eng. 16(2), 6783–6795 (2019)
Zurück zum Zitat Hayber, S.E.: Selection of fiber optic Fabry–Perot interferometer parameter for acoustic sensing applications. In: International conference on advances and innovations in engineering, Turkey. 1-7 (2017) Hayber, S.E.: Selection of fiber optic Fabry–Perot interferometer parameter for acoustic sensing applications. In: International conference on advances and innovations in engineering, Turkey. 1-7 (2017)
Zurück zum Zitat He, X.L., et al.: A cascade fiber optic sensors for simultaneous measurement of strain and temperature. IEEE Sens. Lett. 2(3), 1–4 (2019) He, X.L., et al.: A cascade fiber optic sensors for simultaneous measurement of strain and temperature. IEEE Sens. Lett. 2(3), 1–4 (2019)
Zurück zum Zitat Hill, K.O., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Light. Technol. 15(8), 1263–1276 (1997)ADS Hill, K.O., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Light. Technol. 15(8), 1263–1276 (1997)ADS
Zurück zum Zitat Hong, C., Zhang, Y., Yang, Y., Yuan, Y.: A FBG based displacement transducer for small soil deformation measurement. Sens. Actuators A Phys. 286, 35–42 (2019) Hong, C., Zhang, Y., Yang, Y., Yuan, Y.: A FBG based displacement transducer for small soil deformation measurement. Sens. Actuators A Phys. 286, 35–42 (2019)
Zurück zum Zitat Hsu, Y.S., Wang, L., Liu, W., Chiang, Y.J.: Temperature compensation of optical fiber Bragg grating pressure sensor. IEEE Photonics Technol. Lett. 18(7), 874–876 (2006)ADS Hsu, Y.S., Wang, L., Liu, W., Chiang, Y.J.: Temperature compensation of optical fiber Bragg grating pressure sensor. IEEE Photonics Technol. Lett. 18(7), 874–876 (2006)ADS
Zurück zum Zitat Jin, L., et al.: An embedded FBG sensor for simultaneous measurement of stress and temperature. IEEE Photonics Technol. Lett. 18(1), 154–156 (2006)ADS Jin, L., et al.: An embedded FBG sensor for simultaneous measurement of stress and temperature. IEEE Photonics Technol. Lett. 18(1), 154–156 (2006)ADS
Zurück zum Zitat Ju, S., Watekar, P.R., Han, W.: Enhanced sensitivity of the FBG temperature sensor based on the PbO-GeO2-SiO2 glass optical fiber. J. Light. Technol. 28(18), 2697–2700 (2020) Ju, S., Watekar, P.R., Han, W.: Enhanced sensitivity of the FBG temperature sensor based on the PbO-GeO2-SiO2 glass optical fiber. J. Light. Technol. 28(18), 2697–2700 (2020)
Zurück zum Zitat Kashyap, R.: Principles of optical fiber grating sensors, Second. Academic Press, Elsevier. 441–502 (2010) Kashyap, R.: Principles of optical fiber grating sensors, Second. Academic Press, Elsevier. 441–502 (2010)
Zurück zum Zitat Kim, S., Member, S., Kwon, J., Kim, S., Lee, B.: Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube. IEEE Photonics Technol. Lett. 12(6), 678–680 (2000)ADS Kim, S., Member, S., Kwon, J., Kim, S., Lee, B.: Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube. IEEE Photonics Technol. Lett. 12(6), 678–680 (2000)ADS
Zurück zum Zitat Kuang, Y., Guo, Y., Xiong, L., Liu, W.: Packaging and temperature compensation of fiber Bragg grating for strain sensing : a survey. Photonic Sens. 8(4), 320–331 (2018)ADS Kuang, Y., Guo, Y., Xiong, L., Liu, W.: Packaging and temperature compensation of fiber Bragg grating for strain sensing : a survey. Photonic Sens. 8(4), 320–331 (2018)ADS
Zurück zum Zitat Leal-junior, A.G., Diaz, C., Frizera, A., Ribeiro, M., Marques, C., Pontes, M.J.: Material features based compensation technique for the temperature effects in a polymer diaphragm-based FBG pressure sensor. Opt. Express 26(16), 225–232 (2018) Leal-junior, A.G., Diaz, C., Frizera, A., Ribeiro, M., Marques, C., Pontes, M.J.: Material features based compensation technique for the temperature effects in a polymer diaphragm-based FBG pressure sensor. Opt. Express 26(16), 225–232 (2018)
Zurück zum Zitat Li, R.: Sensitivity enhancement of FBG-based strain sensor. Sensors 18(1607), 1–12 (2018) Li, R.: Sensitivity enhancement of FBG-based strain sensor. Sensors 18(1607), 1–12 (2018)
Zurück zum Zitat Li, T., Shi, C., Ren, H.: A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution. IEEE Photonics Technol. Lett. 29(14), 1199–1202 (2017)ADS Li, T., Shi, C., Ren, H.: A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution. IEEE Photonics Technol. Lett. 29(14), 1199–1202 (2017)ADS
Zurück zum Zitat Liu, Q., Ran, Z.L., Rao, Y.J.: Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain. IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014)ADS Liu, Q., Ran, Z.L., Rao, Y.J.: Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain. IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014)ADS
Zurück zum Zitat Liu, M., Wang, W., Song, H., Zhou, S., Zhou, W.: A high sensitivity FBG strain sensor based on flexible hinge. Sensors 19(1931), 1–11 (2019) Liu, M., Wang, W., Song, H., Zhou, S., Zhou, W.: A high sensitivity FBG strain sensor based on flexible hinge. Sensors 19(1931), 1–11 (2019)
Zurück zum Zitat Lo, Y.L.: Using in-fiber Bragg-grating sensors for measuring axial strain and temperature simultaneously on surfaces of structures. Opt. Eng. 37(8), 2272–2276 (2015)ADSMathSciNet Lo, Y.L.: Using in-fiber Bragg-grating sensors for measuring axial strain and temperature simultaneously on surfaces of structures. Opt. Eng. 37(8), 2272–2276 (2015)ADSMathSciNet
Zurück zum Zitat Madan, A., et al.: Investigation of a Bragg grating-based Fabry–Perot structure inscribed using femtosecond laser micromachining in an adiabatic fiber taper. Appl. Sci. 10(1069), 1–14 (2020)ADS Madan, A., et al.: Investigation of a Bragg grating-based Fabry–Perot structure inscribed using femtosecond laser micromachining in an adiabatic fiber taper. Appl. Sci. 10(1069), 1–14 (2020)ADS
Zurück zum Zitat Munendhar, P., Aneesh, R., Khijwania, S.K.: Development of an all-optical temperature insensitive nonpendulum-type tilt sensor employing fiber Bragg gratings. Appl. Opt. 53(16), 3574–3580 (2014)ADS Munendhar, P., Aneesh, R., Khijwania, S.K.: Development of an all-optical temperature insensitive nonpendulum-type tilt sensor employing fiber Bragg gratings. Appl. Opt. 53(16), 3574–3580 (2014)ADS
Zurück zum Zitat Othonos, A., Kalli, K., Pureur, D., Mugnier, A.: Fiber Bragg gratings. In: Wavelength filters in fibre optics, pp. 189–269. Springer, Berlin Heidelberg (2006) Othonos, A., Kalli, K., Pureur, D., Mugnier, A.: Fiber Bragg gratings. In: Wavelength filters in fibre optics, pp. 189–269. Springer, Berlin Heidelberg (2006)
Zurück zum Zitat Pachava, V.R., Srimannarayana, K., Madhuvarasu, S.S., Kishore, P.: Polymer packaged fiber Grating pressure sensor with enhanced sensitivity. Int. J. Optoelectron. Eng. 4(1), 1–5 (2014) Pachava, V.R., Srimannarayana, K., Madhuvarasu, S.S., Kishore, P.: Polymer packaged fiber Grating pressure sensor with enhanced sensitivity. Int. J. Optoelectron. Eng. 4(1), 1–5 (2014)
Zurück zum Zitat Park, S.O., Jang, B.W., Lee, Y.G., Kim, C.G., Park, C.Y.: Simultaneous measurement of strain and temperature using a reverse index fiber Bragg grating sensor. Meas. Sci. Technol. 21(035703), 1–8 (2010) Park, S.O., Jang, B.W., Lee, Y.G., Kim, C.G., Park, C.Y.: Simultaneous measurement of strain and temperature using a reverse index fiber Bragg grating sensor. Meas. Sci. Technol. 21(035703), 1–8 (2010)
Zurück zum Zitat Peng, J., Jia, S., Jin, Y., Xu, S., Xu, Z.: Design and investigation of a sensitivity-enhanced fiber Bragg grating sensor for micro-strain measurement. Sensors Actuators A Phys. 285, 437–447 (2019) Peng, J., Jia, S., Jin, Y., Xu, S., Xu, Z.: Design and investigation of a sensitivity-enhanced fiber Bragg grating sensor for micro-strain measurement. Sensors Actuators A Phys. 285, 437–447 (2019)
Zurück zum Zitat Rao, Y.: In-fibre Bragg grating sensors. Meas. Sci. Technol. 8, 355–375 (1997)ADS Rao, Y.: In-fibre Bragg grating sensors. Meas. Sci. Technol. 8, 355–375 (1997)ADS
Zurück zum Zitat Roussel, N., Magne, S., Martinez, C., Ferdinand, P.: Measurement of index modulation along fiber Bragg gratings by side scattering and local heating techniques. Opt. Fiber Technol.Fiber Technol. 5(1), 119–132 (1999)ADS Roussel, N., Magne, S., Martinez, C., Ferdinand, P.: Measurement of index modulation along fiber Bragg gratings by side scattering and local heating techniques. Opt. Fiber Technol.Fiber Technol. 5(1), 119–132 (1999)ADS
Zurück zum Zitat Russell, P., Reekie, L., Archambault, J.L.: High reflectivity and narrow bandwidth fiber gratings written by excimer pulse. Electron. Lett. 29(1), 28–29 (1993)ADS Russell, P., Reekie, L., Archambault, J.L.: High reflectivity and narrow bandwidth fiber gratings written by excimer pulse. Electron. Lett. 29(1), 28–29 (1993)ADS
Zurück zum Zitat Sa’ad, M.S.M., et al.: Temperature-independent vibration sensor based on Fabry–Perot interferometer using a fiber Bragg grating approach. Opt. Eng. 61(3), 1–13 (2022) Sa’ad, M.S.M., et al.: Temperature-independent vibration sensor based on Fabry–Perot interferometer using a fiber Bragg grating approach. Opt. Eng. 61(3), 1–13 (2022)
Zurück zum Zitat Sahota, J.K., Gupta, N., Dhawan, D.: Fiber Bragg grating sensors for monitoring of physical parameters : a comprehensive review. Opt. Eng. 59(6), 1–35 (2020) Sahota, J.K., Gupta, N., Dhawan, D.: Fiber Bragg grating sensors for monitoring of physical parameters : a comprehensive review. Opt. Eng. 59(6), 1–35 (2020)
Zurück zum Zitat Sampath, U., Kim, D., Kim, H., Song, M.: Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions. Appl. Opt. 57(3), 492–497 (2018)ADS Sampath, U., Kim, D., Kim, H., Song, M.: Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions. Appl. Opt. 57(3), 492–497 (2018)ADS
Zurück zum Zitat Satya, V., Swamy, C., Parne, S.R., Afzulpurkar, S.: Design and development of pressure sensor based on fiber Bragg grating (FBG) for ocean applications. Eur. Phys. J. Appl. Phys. 90(30501), 1–9 (2020) Satya, V., Swamy, C., Parne, S.R., Afzulpurkar, S.: Design and development of pressure sensor based on fiber Bragg grating (FBG) for ocean applications. Eur. Phys. J. Appl. Phys. 90(30501), 1–9 (2020)
Zurück zum Zitat Sengupta, S., Ghorai, S.K., Biswas, P.: Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity. IEEE Sens. J. 16(22), 7941–7949 (2016)ADS Sengupta, S., Ghorai, S.K., Biswas, P.: Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity. IEEE Sens. J. 16(22), 7941–7949 (2016)ADS
Zurück zum Zitat Shi, Q., Wang, Y., Cui, Y., Xia, W., Guo, D., Wang, M.: Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator. IEEE Sens. J. 18(23), 9562–9567 (2018)ADS Shi, Q., Wang, Y., Cui, Y., Xia, W., Guo, D., Wang, M.: Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator. IEEE Sens. J. 18(23), 9562–9567 (2018)ADS
Zurück zum Zitat Singh, A.K., Berggren, S., Zhu, Y., Han, M., Huang, H.: Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate. Smart Mater. Struct. 26, 1–10 (2017) Singh, A.K., Berggren, S., Zhu, Y., Han, M., Huang, H.: Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate. Smart Mater. Struct. 26, 1–10 (2017)
Zurück zum Zitat Sonja, J., Strehlow, J., Heldmann, S., Mevis, F.: Shape sensing with fiber Bragg grating sensors reconstruction. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2019, pp. 1–2. (2019) Sonja, J., Strehlow, J., Heldmann, S., Mevis, F.: Shape sensing with fiber Bragg grating sensors reconstruction. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2019, pp. 1–2. (2019)
Zurück zum Zitat Srinivasan, B., Harish, A.V., Srijith, K., Balasubramaniam, K.: Elastic wave sensing using fiber Bragg grating-based sensors and dynamic interrogators. J. Indian Inst. Sci. 94(3), 329–340 (2014) Srinivasan, B., Harish, A.V., Srijith, K., Balasubramaniam, K.: Elastic wave sensing using fiber Bragg grating-based sensors and dynamic interrogators. J. Indian Inst. Sci. 94(3), 329–340 (2014)
Zurück zum Zitat Tian, K., Liu, Y., Wang, Q.: Temperature-independent fiber Bragg grating strain sensor using bimetal cantilever. Opt. Fiber Technol.Fiber Technol. 11, 370–377 (2005)ADS Tian, K., Liu, Y., Wang, Q.: Temperature-independent fiber Bragg grating strain sensor using bimetal cantilever. Opt. Fiber Technol.Fiber Technol. 11, 370–377 (2005)ADS
Zurück zum Zitat Tiwari, U., Thyagarajan, K., Shenoy, M.R.: Strain and temperature discrimination technique by use of a FBG written in erbium doped fiber. Opt. Int. J. Light Electron Opt. 125(1), 235–237 (2014) Tiwari, U., Thyagarajan, K., Shenoy, M.R.: Strain and temperature discrimination technique by use of a FBG written in erbium doped fiber. Opt. Int. J. Light Electron Opt. 125(1), 235–237 (2014)
Zurück zum Zitat Trpkovski, S., Wade, S.A., Collins, S.F., Kouroussis, G., Kinet, D., Mendoza, E.: Simultaneous load and temperature measurement using Lophine-coated fiber Bragg gratings. Smart Mater. Struct.Struct. 25(115019), 1–6 (2016) Trpkovski, S., Wade, S.A., Collins, S.F., Kouroussis, G., Kinet, D., Mendoza, E.: Simultaneous load and temperature measurement using Lophine-coated fiber Bragg gratings. Smart Mater. Struct.Struct. 25(115019), 1–6 (2016)
Zurück zum Zitat Wang, Z., Shen, F., Song, L., Wang, X., Wang, A.: Multiplexed fiber Fabry–Pérot interferometer sensors based on ultrashort Bragg gratings. IEEE Photonics Technol. Lett. 19(8), 622–624 (2007)ADS Wang, Z., Shen, F., Song, L., Wang, X., Wang, A.: Multiplexed fiber Fabry–Pérot interferometer sensors based on ultrashort Bragg gratings. IEEE Photonics Technol. Lett. 19(8), 622–624 (2007)ADS
Zurück zum Zitat Wang, K., Wang, B., Yan, B., Sang, X., Yuan, J., Peng, G.: Simultaneous measurement of absolute strain and differential strain based on fi ber Bragg grating Fabry – Perot sensor. Opt. Commun.Commun. 307, 101–105 (2013)ADS Wang, K., Wang, B., Yan, B., Sang, X., Yuan, J., Peng, G.: Simultaneous measurement of absolute strain and differential strain based on fi ber Bragg grating Fabry – Perot sensor. Opt. Commun.Commun. 307, 101–105 (2013)ADS
Zurück zum Zitat Wang, H., Member, S., Zhang, R., Chen, W., Liang, X., Pfeifer, R.: Shape detection algorithm for soft manipulator based on fiber Bragg gratings. IEEE/ASME Trans. Mechatron.Mechatron. 21(6), 2977–2982 (2016) Wang, H., Member, S., Zhang, R., Chen, W., Liang, X., Pfeifer, R.: Shape detection algorithm for soft manipulator based on fiber Bragg gratings. IEEE/ASME Trans. Mechatron.Mechatron. 21(6), 2977–2982 (2016)
Zurück zum Zitat Wang, J.: Research on dynamic grating cascaded fiber Bragg grating Fabry–Perot cavity. In: 2020 IEEE conference on telecommunications, optics and computer science, TOCS 2020, pp. 85–88. (2020) Wang, J.: Research on dynamic grating cascaded fiber Bragg grating Fabry–Perot cavity. In: 2020 IEEE conference on telecommunications, optics and computer science, TOCS 2020, pp. 85–88. (2020)
Zurück zum Zitat Xiong, L., Jiang, G., Guo, Y., Kuang, Y.: Investigation of the temperature compensation of FBGs encapsulated with different methods and subjected to different temperature change rates. J. Light. Technol. 37(3), 917–926 (2019)ADS Xiong, L., Jiang, G., Guo, Y., Kuang, Y.: Investigation of the temperature compensation of FBGs encapsulated with different methods and subjected to different temperature change rates. J. Light. Technol. 37(3), 917–926 (2019)ADS
Zurück zum Zitat Yulianti, I., Sahmah, A., Supa, M., Idrus, S.M., Anwar, M.R.S.: Measurement of humidity and temperature. Opt. Int. J. Light Electron Opt. 124, 3919–3923 (2013) Yulianti, I., Sahmah, A., Supa, M., Idrus, S.M., Anwar, M.R.S.: Measurement of humidity and temperature. Opt. Int. J. Light Electron Opt. 124, 3919–3923 (2013)
Zurück zum Zitat Zhang, W.T., Li, F., Liu, Y.L., Liu, L.H.: Ultrathin FBG pressure sensor with enhanced responsitivity. IEEE Photonics Technol. Lett. 19(19), 1553–1555 (2007)ADS Zhang, W.T., Li, F., Liu, Y.L., Liu, L.H.: Ultrathin FBG pressure sensor with enhanced responsitivity. IEEE Photonics Technol. Lett. 19(19), 1553–1555 (2007)ADS
Zurück zum Zitat Zhang, Q., Zeng, J., Zhu, L., Yang, D., Zhang, P.: Temperature sensors based on multimode chalcogenide fibre Bragg gratings. J. Mod. Opt. 65(7), 830–836 (2018a)ADSMathSciNet Zhang, Q., Zeng, J., Zhu, L., Yang, D., Zhang, P.: Temperature sensors based on multimode chalcogenide fibre Bragg gratings. J. Mod. Opt. 65(7), 830–836 (2018a)ADSMathSciNet
Zurück zum Zitat Zhang, A.L., Qiao, X., Bao, W.: Strain and temperature discrimination using a fiber Bragg grating with off-axis inscription. Opt. Int. J. Light Electron Opt. 171, 941–946 (2018b) Zhang, A.L., Qiao, X., Bao, W.: Strain and temperature discrimination using a fiber Bragg grating with off-axis inscription. Opt. Int. J. Light Electron Opt. 171, 941–946 (2018b)
Zurück zum Zitat Zhao, Y., Liu, Y., Zhou, C., Guo, Q., Wang, T.: Sensing characteristics of long-period fiber Gratings written in thinned cladding fiber. IEEE Sens. J. 16(5), 1217–1223 (2016)ADS Zhao, Y., Liu, Y., Zhou, C., Guo, Q., Wang, T.: Sensing characteristics of long-period fiber Gratings written in thinned cladding fiber. IEEE Sens. J. 16(5), 1217–1223 (2016)ADS
Zurück zum Zitat Zhao, X., et al.: Ultra-high sensitivity and temperature-compensated Fabry-Perot strain sensor based on tapered FBG. Opt. Laser Technol. 124, 105997, 1–6 (2020) Zhao, X., et al.: Ultra-high sensitivity and temperature-compensated Fabry-Perot strain sensor based on tapered FBG. Opt. Laser Technol. 124, 105997, 1–6 (2020)
Zurück zum Zitat Zhu, H., Yin, J., Zhang, L., Jin, W., Dong, J.: Monitoring internal displacements of a model dam using FBG sensing bars. Adv. Struct. Eng.Struct. Eng. 13(2), 249–261 (2010)ADS Zhu, H., Yin, J., Zhang, L., Jin, W., Dong, J.: Monitoring internal displacements of a model dam using FBG sensing bars. Adv. Struct. Eng.Struct. Eng. 13(2), 249–261 (2010)ADS
Metadaten
Titel
Investigating the effect of modulation depth of refractive index in cascaded FBGs for dual sensing of strain and temperature
verfasst von
Jasjot Kaur Sahota
Divya Dhawan
Neena Gupta
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06446-z

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt