Skip to main content

2019 | OriginalPaper | Buchkapitel

Investigation into Plastic Deformation and Machining-Induced Subsurface Damage of High-Entropy Alloys

verfasst von : Jia Li, Qihong Fang

Erschienen in: Simulation and Experiments of Material-Oriented Ultra-Precision Machining

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-entropy alloys (HEAs), which contain more than five principal elements with equal or near equal atomic percent, exhibit high wear resistant, high strength, and great plasticity. However, the plastic deformation mechanism and the machining-induced subsurface damage of HEAs at nanoscale are not yet fully understood, to limit their widely practical utility. Based on the experiment, AlCrFeCuNi HEA of atomic model is built through a melting and quick quenching method. In this work, we study the mechanical behaviors of AlCrFeCuNi HEA under uniaxial tensile loading and scratching processes by molecular dynamics (MD) simulations, in terms of the scratching force, atomic strain, atomic displacement, microstructural evolution, and dislocation density. The results show that the HEA obtained from MD simulations not only has high strength, but also exhibits good plasticity which is qualitatively consistent with the experiment. The dislocation gliding, dislocation pinning, and twinning subjected to the severe atomic lattice distortion and solid solution effects are still the main mechanism of plastic deformation in HEA. In addition, the larger tangential and normal forces and higher friction coefficient take place in HEA due to its outstanding strength and hardness, and high adhesion over the pure metal materials. Furthermore, the excellent comprehensive scratching properties of the bulk HEA are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This atomistic mechanism provides a fundamental understanding of plastic deformation and scratching behavior in HEA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817CrossRef Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817CrossRef
2.
Zurück zum Zitat Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15:1100CrossRef Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15:1100CrossRef
3.
Zurück zum Zitat Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345:1153–1158CrossRef Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345:1153–1158CrossRef
4.
Zurück zum Zitat Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93CrossRef Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93CrossRef
5.
Zurück zum Zitat Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303CrossRef Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303CrossRef
6.
Zurück zum Zitat Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippan R, Hohenwarter A (2015) Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 96:258–268CrossRef Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippan R, Hohenwarter A (2015) Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 96:258–268CrossRef
7.
Zurück zum Zitat Yeh JW (2006) Recent progress in high-entropy alloys. Ann Chim Sci Mater 31:633–648CrossRef Yeh JW (2006) Recent progress in high-entropy alloys. Ann Chim Sci Mater 31:633–648CrossRef
8.
Zurück zum Zitat He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP (2014) Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater 62:105–113CrossRef He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP (2014) Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater 62:105–113CrossRef
9.
Zurück zum Zitat He JY, Wang H, Huang HL, Xu XD, Chen MW, Wu Y, Lu ZP (2016) A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater 102:187–196CrossRef He JY, Wang H, Huang HL, Xu XD, Chen MW, Wu Y, Lu ZP (2016) A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater 102:187–196CrossRef
10.
Zurück zum Zitat Gao X, Lu Y, Zhang B, Liang N, Wu G, Sha G, Zhao Y (2017) Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater 141:59–66CrossRef Gao X, Lu Y, Zhang B, Liang N, Wu G, Sha G, Zhao Y (2017) Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater 141:59–66CrossRef
11.
Zurück zum Zitat Lu Y, Gao X, Jiang L, Chen Z, Wang T, Jie J, Zhao Y (2017) Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater 124:143–150CrossRef Lu Y, Gao X, Jiang L, Chen Z, Wang T, Jie J, Zhao Y (2017) Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater 124:143–150CrossRef
12.
Zurück zum Zitat Tracy CL, Park S, Rittman DR, Zinkle SJ, Bei H, Lang M, Mao WL (2017) High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun 8:15634CrossRef Tracy CL, Park S, Rittman DR, Zinkle SJ, Bei H, Lang M, Mao WL (2017) High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun 8:15634CrossRef
13.
Zurück zum Zitat Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A, Liaw PK (2012) Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater 60:5723–5734CrossRef Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A, Liaw PK (2012) Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater 60:5723–5734CrossRef
14.
Zurück zum Zitat Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534:227CrossRef Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534:227CrossRef
15.
Zurück zum Zitat Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC (2006) Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261:513–519CrossRef Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC (2006) Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261:513–519CrossRef
16.
Zurück zum Zitat Yadav S, Sarkar S, Aggarwal A, Kumar A, Biswas K (2018) Wear and mechanical properties of novel (CuCrFeTiZn)100-xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 410:93–109CrossRef Yadav S, Sarkar S, Aggarwal A, Kumar A, Biswas K (2018) Wear and mechanical properties of novel (CuCrFeTiZn)100-xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 410:93–109CrossRef
17.
Zurück zum Zitat Ye YX, Liu CZ, Wang H, Nieh TG (2018) Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater 147:78–89CrossRef Ye YX, Liu CZ, Wang H, Nieh TG (2018) Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater 147:78–89CrossRef
18.
Zurück zum Zitat Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov VV (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550:492CrossRef Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov VV (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550:492CrossRef
19.
Zurück zum Zitat Wu Z, Ahmad R, Yin B, Sandlöbes S, Curtin WA (2018) Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science 359:447–452CrossRef Wu Z, Ahmad R, Yin B, Sandlöbes S, Curtin WA (2018) Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science 359:447–452CrossRef
20.
Zurück zum Zitat Kao SW, Yeh JW, Chin TS (2008) Rapidly solidified structure of alloys with up to eight equal-molar elements—a simulation by molecular dynamics. J Phys Cond Matter 20:145214CrossRef Kao SW, Yeh JW, Chin TS (2008) Rapidly solidified structure of alloys with up to eight equal-molar elements—a simulation by molecular dynamics. J Phys Cond Matter 20:145214CrossRef
21.
Zurück zum Zitat Xie L, Brault P, Thomann AL, Yang X, Zhang Y, Shang G (2016) Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics 68:78–86CrossRef Xie L, Brault P, Thomann AL, Yang X, Zhang Y, Shang G (2016) Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics 68:78–86CrossRef
22.
Zurück zum Zitat Li J, Fang Q, Liu B, Liu Y, Liu YW (2016) Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv. 6:76409–76419CrossRef Li J, Fang Q, Liu B, Liu Y, Liu YW (2016) Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv. 6:76409–76419CrossRef
23.
Zurück zum Zitat Sharma A, Balasubramanian G (2017) Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading. Intermetallics 91:31–34CrossRef Sharma A, Balasubramanian G (2017) Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading. Intermetallics 91:31–34CrossRef
24.
Zurück zum Zitat Fang QH, Yi M, Li J, Liu B, Huang Z (2018) Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation. Appl Sur Sci 443:122–130CrossRef Fang QH, Yi M, Li J, Liu B, Huang Z (2018) Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation. Appl Sur Sci 443:122–130CrossRef
25.
Zurück zum Zitat Li J, Fang QH, Liu B, Liu Y, Liu YW (2016) Atomic-scale analysis of nanoindentation behavior of high-entropy alloy. J Micro Mol Phys 1:1650001CrossRef Li J, Fang QH, Liu B, Liu Y, Liu YW (2016) Atomic-scale analysis of nanoindentation behavior of high-entropy alloy. J Micro Mol Phys 1:1650001CrossRef
26.
Zurück zum Zitat Wang Z, Li J, Fang QH, Liu B, Zhang LC (2017) Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl Sur Sci 416:470–481CrossRef Wang Z, Li J, Fang QH, Liu B, Zhang LC (2017) Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl Sur Sci 416:470–481CrossRef
27.
Zurück zum Zitat Li J, Fang QH, Liu B, Liu Y (2018) Transformation induced softening and plasticity in high entropy alloys. Acta Mater 147:35–41CrossRef Li J, Fang QH, Liu B, Liu Y (2018) Transformation induced softening and plasticity in high entropy alloys. Acta Mater 147:35–41CrossRef
28.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19MATHCrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19MATHCrossRef
29.
Zurück zum Zitat Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:15012CrossRef Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:15012CrossRef
30.
Zurück zum Zitat Zhu PZ, Fang FZ (2012) Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Appl Phys A 108:415–421CrossRef Zhu PZ, Fang FZ (2012) Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Appl Phys A 108:415–421CrossRef
31.
Zurück zum Zitat Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106CrossRef Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106CrossRef
32.
Zurück zum Zitat Cohen AJ, Gordon RG (1975) Theory of the lattice energy, equilibrium structure, elastic constants, and pressure-induced phase transitions in alkali-halide crystals. Phys Rev B 12:3228CrossRef Cohen AJ, Gordon RG (1975) Theory of the lattice energy, equilibrium structure, elastic constants, and pressure-induced phase transitions in alkali-halide crystals. Phys Rev B 12:3228CrossRef
33.
Zurück zum Zitat Pi JH, Pan Y, Zhang H, Zhan L (2012) Microstructure and properties of AlCrFeCuNix, 0.6≤ x≤1.4, high-entropy alloys. Mater Sci Eng A 534:228–233CrossRef Pi JH, Pan Y, Zhang H, Zhan L (2012) Microstructure and properties of AlCrFeCuNix, 0.6≤ x≤1.4, high-entropy alloys. Mater Sci Eng A 534:228–233CrossRef
34.
Zurück zum Zitat Ma SG, Qiao JW, Wang ZH, Yang HJ, Zhang Y (2015) Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Mater Des 88:1057–1062CrossRef Ma SG, Qiao JW, Wang ZH, Yang HJ, Zhang Y (2015) Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Mater Des 88:1057–1062CrossRef
35.
Zurück zum Zitat Ma SG, Jiao ZM, Qiao JW, Yang HJ, Zhang Y, Wang ZH (2016) Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy. Mater Sci Eng, A 649:35–38CrossRef Ma SG, Jiao ZM, Qiao JW, Yang HJ, Zhang Y, Wang ZH (2016) Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy. Mater Sci Eng, A 649:35–38CrossRef
36.
Zurück zum Zitat Li XY, Gao HJ (2016) Mechanical metamaterials: smaller and stronger. Nat Mater 15:373–374CrossRef Li XY, Gao HJ (2016) Mechanical metamaterials: smaller and stronger. Nat Mater 15:373–374CrossRef
37.
Zurück zum Zitat Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963CrossRef Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963CrossRef
38.
Zurück zum Zitat Zaddach AJ, Niu C, Koch CC, Irving DL (2013) Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65:1780–1789CrossRef Zaddach AJ, Niu C, Koch CC, Irving DL (2013) Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65:1780–1789CrossRef
39.
Zurück zum Zitat Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci 18:085001CrossRef Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci 18:085001CrossRef
40.
Zurück zum Zitat Zhao WS, Tao NR, Guo JY, Lu QH, Lu K (2005) High density nano-scale twins in Cu induced by dynamic plastic deformation. Scripta Mater 53:745–749CrossRef Zhao WS, Tao NR, Guo JY, Lu QH, Lu K (2005) High density nano-scale twins in Cu induced by dynamic plastic deformation. Scripta Mater 53:745–749CrossRef
41.
Zurück zum Zitat Liu S, Wei YJ (2017) The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Ext Mech Lett 11:84–88CrossRef Liu S, Wei YJ (2017) The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Ext Mech Lett 11:84–88CrossRef
42.
Zurück zum Zitat Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Mater 94:124–133CrossRef Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Mater 94:124–133CrossRef
43.
Zurück zum Zitat Zhang YH, Zhuang Y, Hu A, Kai JJ, Liu CT (2017) The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Mater 130:96–99CrossRef Zhang YH, Zhuang Y, Hu A, Kai JJ, Liu CT (2017) The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Mater 130:96–99CrossRef
44.
Zurück zum Zitat Fu Z, Chen W, Wen H, Zhang D, Chen Z, Zheng B, Lavernia EJ (2016) Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107:59–71CrossRef Fu Z, Chen W, Wen H, Zhang D, Chen Z, Zheng B, Lavernia EJ (2016) Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107:59–71CrossRef
45.
Zurück zum Zitat Yaakobi B, Boehly TR, Meyerhofer DD, Collins TJB, Remington BA, Allen PG, Eggert JH (2005) EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks. Phys Rev Lett 95:075501CrossRef Yaakobi B, Boehly TR, Meyerhofer DD, Collins TJB, Remington BA, Allen PG, Eggert JH (2005) EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks. Phys Rev Lett 95:075501CrossRef
46.
Zurück zum Zitat Olson GB, Cohen MJ (1972) A mechanism for the strain-induced nucleation of martensitic transformations. J Less Common Metals 28:107–118CrossRef Olson GB, Cohen MJ (1972) A mechanism for the strain-induced nucleation of martensitic transformations. J Less Common Metals 28:107–118CrossRef
47.
Zurück zum Zitat Kadau K, Germann TC, Lomdahl PS, Holian BL (2005) Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys Rev B 72:064120CrossRef Kadau K, Germann TC, Lomdahl PS, Holian BL (2005) Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys Rev B 72:064120CrossRef
48.
Zurück zum Zitat Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater 51:1871–1881CrossRef Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater 51:1871–1881CrossRef
49.
Zurück zum Zitat Wang B, Urbassek HM (2013) Molecular dynamics study of the α–γ phase transition in Fe induced by shear deformation. Acta Mater 61:5979–5987CrossRef Wang B, Urbassek HM (2013) Molecular dynamics study of the α–γ phase transition in Fe induced by shear deformation. Acta Mater 61:5979–5987CrossRef
50.
Zurück zum Zitat Diao J, Gall K, Dunn ML (2003) Surface-stress-induced phase transformation in metal nanowires. Nat Mater 2:656–660CrossRef Diao J, Gall K, Dunn ML (2003) Surface-stress-induced phase transformation in metal nanowires. Nat Mater 2:656–660CrossRef
51.
Zurück zum Zitat Telford M (2004) The case for bulk metallic glass. Mater Today 7:36–43CrossRef Telford M (2004) The case for bulk metallic glass. Mater Today 7:36–43CrossRef
52.
Zurück zum Zitat Greer AL, Ma E (2007) Bulk metallic glasses: at the cutting edge of metals research. MRS Bull 32:611–619CrossRef Greer AL, Ma E (2007) Bulk metallic glasses: at the cutting edge of metals research. MRS Bull 32:611–619CrossRef
53.
Zurück zum Zitat Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng, R 44:45–89CrossRef Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng, R 44:45–89CrossRef
54.
Zurück zum Zitat Hertz H (1896) Miscellaneous papers. Macmillan, New YorkMATH Hertz H (1896) Miscellaneous papers. Macmillan, New YorkMATH
55.
Zurück zum Zitat Zhang JJ, Sun T, Hartmaier A, Yan YD (2012) Atomistic simulation of the influence of nanomachining-induced deformation on subsequent nanoindentation. Comp Mater Sci 59:14–21CrossRef Zhang JJ, Sun T, Hartmaier A, Yan YD (2012) Atomistic simulation of the influence of nanomachining-induced deformation on subsequent nanoindentation. Comp Mater Sci 59:14–21CrossRef
56.
Zurück zum Zitat Zhang JJ, Sun T, Yan Y, He Y, Liang Y, Dong S (2011) Atomistic investigation of probe-based nanomachining on Cu twin boundaries. J Comp The Nano 8:2344–2349CrossRef Zhang JJ, Sun T, Yan Y, He Y, Liang Y, Dong S (2011) Atomistic investigation of probe-based nanomachining on Cu twin boundaries. J Comp The Nano 8:2344–2349CrossRef
57.
Zurück zum Zitat Qiu C, Zhu P, Fang F, Yuan D, Shen X (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Sur Sci 305:101–110CrossRef Qiu C, Zhu P, Fang F, Yuan D, Shen X (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Sur Sci 305:101–110CrossRef
58.
Zurück zum Zitat Pi J, Wang Z, He X, Bai Y, Zhen R (2016) Nanoindentation mechanical properties of glassy Cu29Zr32Ti15Al5Ni19. J Alloys Comp 657:726–732CrossRef Pi J, Wang Z, He X, Bai Y, Zhen R (2016) Nanoindentation mechanical properties of glassy Cu29Zr32Ti15Al5Ni19. J Alloys Comp 657:726–732CrossRef
59.
Zurück zum Zitat Zhao SF, Shao Y, Liu X, Chen N, Ding HY, Yao KF (2015) Pseudo-quinary Ti20Zr20Hf20Be20(Cu20-xNix) high entropy bulk metallic glasses with large glass forming ability. Mater Des 87:625–631CrossRef Zhao SF, Shao Y, Liu X, Chen N, Ding HY, Yao KF (2015) Pseudo-quinary Ti20Zr20Hf20Be20(Cu20-xNix) high entropy bulk metallic glasses with large glass forming ability. Mater Des 87:625–631CrossRef
60.
Zurück zum Zitat Gong P, Jin J, Deng L, Wang S, Gu J, Yao K, Wang X (2017) Room temperature nanoindentation creep behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Mater Sci Eng, A 688:174–179CrossRef Gong P, Jin J, Deng L, Wang S, Gu J, Yao K, Wang X (2017) Room temperature nanoindentation creep behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Mater Sci Eng, A 688:174–179CrossRef
61.
Zurück zum Zitat Ding HY, Shao Y, Gong P, Li JF, Yao KF (2014) A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Mater Lett 125:151–153CrossRef Ding HY, Shao Y, Gong P, Li JF, Yao KF (2014) A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Mater Lett 125:151–153CrossRef
62.
Zurück zum Zitat Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57:487–656CrossRef Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57:487–656CrossRef
63.
Zurück zum Zitat Rao JC, Diao HY, Ocelík V, Vainchtein D, Zhang C, Kuo C, Liaw PK (2017) Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Mater 131:206–220CrossRef Rao JC, Diao HY, Ocelík V, Vainchtein D, Zhang C, Kuo C, Liaw PK (2017) Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Mater 131:206–220CrossRef
64.
Zurück zum Zitat Borkar T, Gwalani B, Choudhuri D, Mikler CV, Yannetta CJ, Chen X, Banerjee R (2016) A combinatorial assessment of AlxCrCuFeNi2 (0<x<1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater 116:63–76CrossRef Borkar T, Gwalani B, Choudhuri D, Mikler CV, Yannetta CJ, Chen X, Banerjee R (2016) A combinatorial assessment of AlxCrCuFeNi2 (0<x<1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater 116:63–76CrossRef
65.
Zurück zum Zitat Nishikawa M, Soyama H (2011) Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests. Mater Des 32:3240–3247CrossRef Nishikawa M, Soyama H (2011) Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests. Mater Des 32:3240–3247CrossRef
66.
Zurück zum Zitat Cheng JB, Liang XB, Xu BS (2014) Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf Coat Tech 240:184–190CrossRef Cheng JB, Liang XB, Xu BS (2014) Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf Coat Tech 240:184–190CrossRef
67.
68.
Zurück zum Zitat Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci 21:433–446CrossRef Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci 21:433–446CrossRef
69.
Zurück zum Zitat Azumo S, Nagayama K (2006) Amorphous formation and magnetic properties of Nd–Fe–Co–Al alloys by gas flow type levitation process. Mater Trans 47:2842–2845CrossRef Azumo S, Nagayama K (2006) Amorphous formation and magnetic properties of Nd–Fe–Co–Al alloys by gas flow type levitation process. Mater Trans 47:2842–2845CrossRef
70.
Zurück zum Zitat Hu ZQ, Ding BZ, Zhang HF, Li DJ, Yao B, Liu HZ, Wang AM (2001) Formation of non-equilibrium alloys by high pressure melt quenching. Sci Technol Adv Mat 2:41–48CrossRef Hu ZQ, Ding BZ, Zhang HF, Li DJ, Yao B, Liu HZ, Wang AM (2001) Formation of non-equilibrium alloys by high pressure melt quenching. Sci Technol Adv Mat 2:41–48CrossRef
71.
Zurück zum Zitat Li J, Fang QH, Liu YW, Zhang LC (2015) Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics. Int J Adv Manuf Tech 77:1057–1070CrossRef Li J, Fang QH, Liu YW, Zhang LC (2015) Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics. Int J Adv Manuf Tech 77:1057–1070CrossRef
72.
Zurück zum Zitat Li J, Fang QH, Liu YW, Zhang LC (2014) A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl Surf Sci 303:331–343CrossRef Li J, Fang QH, Liu YW, Zhang LC (2014) A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl Surf Sci 303:331–343CrossRef
73.
Zurück zum Zitat Zhang JJ, Begau C, Geng L, Hartmaier A (2015) Atomistic investigation of wear mechanisms of a copper bi-crystal. Wear 332:941–948CrossRef Zhang JJ, Begau C, Geng L, Hartmaier A (2015) Atomistic investigation of wear mechanisms of a copper bi-crystal. Wear 332:941–948CrossRef
74.
Zurück zum Zitat Diao H, Xie X, Sun F, Dahmen KA, Liaw PK (2016) Mechanical properties of high-entropy alloys. Springer International Publishing, BerlinCrossRef Diao H, Xie X, Sun F, Dahmen KA, Liaw PK (2016) Mechanical properties of high-entropy alloys. Springer International Publishing, BerlinCrossRef
75.
Zurück zum Zitat Wang Y, Yang Y, Yang H, Zhang M, Qiao J (2017) Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J Alloy Comp 725:365–372CrossRef Wang Y, Yang Y, Yang H, Zhang M, Qiao J (2017) Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J Alloy Comp 725:365–372CrossRef
76.
Zurück zum Zitat Reihanian M, Ebrahimi R, Tsuji N, Moshksar MM (2008) Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP). Mater Sci Eng, A 473:189–194CrossRef Reihanian M, Ebrahimi R, Tsuji N, Moshksar MM (2008) Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP). Mater Sci Eng, A 473:189–194CrossRef
77.
Zurück zum Zitat Li W, Liaw PK, Gao Y (2018) Fracture resistance of high entropy alloys: a review. Intermetallics 99:69–83CrossRef Li W, Liaw PK, Gao Y (2018) Fracture resistance of high entropy alloys: a review. Intermetallics 99:69–83CrossRef
78.
Zurück zum Zitat Liu Y, Ma S, Gao MC, Zhang C, Zhang T, Yang H, Qiao J (2016) Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Metal Mater Trans A 47:3312–3321CrossRef Liu Y, Ma S, Gao MC, Zhang C, Zhang T, Yang H, Qiao J (2016) Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Metal Mater Trans A 47:3312–3321CrossRef
79.
Zurück zum Zitat Zhang JJ, Wei YJ, Sun T, Hartmaier A, Yan YD, Li X (2012) Twin boundary spacing-dependent friction in nanotwinned copper. Phys Rev B 85:054109CrossRef Zhang JJ, Wei YJ, Sun T, Hartmaier A, Yan YD, Li X (2012) Twin boundary spacing-dependent friction in nanotwinned copper. Phys Rev B 85:054109CrossRef
80.
Zurück zum Zitat Gao Y, Urbassek HM (2016) Scratching of nanocrystalline metals: a molecular dynamics study of Fe. Appl Surf Sci 389:688–695CrossRef Gao Y, Urbassek HM (2016) Scratching of nanocrystalline metals: a molecular dynamics study of Fe. Appl Surf Sci 389:688–695CrossRef
81.
Zurück zum Zitat Gao Y, Lu C, Huynh NN, Michal G, Zhu HT, Tieu AK (2009) Molecular dynamics simulation of effect of indenter shape on nanoscratch of Ni. Wear 267:1998–2002CrossRef Gao Y, Lu C, Huynh NN, Michal G, Zhu HT, Tieu AK (2009) Molecular dynamics simulation of effect of indenter shape on nanoscratch of Ni. Wear 267:1998–2002CrossRef
82.
Zurück zum Zitat Tsai CW, Chen YL, Tsai MH, Yeh JW, Shun TT, Chen SK (2009) Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd 486:427–435CrossRef Tsai CW, Chen YL, Tsai MH, Yeh JW, Shun TT, Chen SK (2009) Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd 486:427–435CrossRef
83.
Zurück zum Zitat Zhang F, Meng B, Geng Y, Zhang Y (2016) Study on the machined depth when nanoscratching on 6H-SiC using Berkovich indenter: Modelling and experimental study. Appl Sur Sci 368:449–455CrossRef Zhang F, Meng B, Geng Y, Zhang Y (2016) Study on the machined depth when nanoscratching on 6H-SiC using Berkovich indenter: Modelling and experimental study. Appl Sur Sci 368:449–455CrossRef
84.
Zurück zum Zitat Lu K, Lu J (2004) Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng, A 375:38–45CrossRef Lu K, Lu J (2004) Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng, A 375:38–45CrossRef
85.
Zurück zum Zitat Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331:1587–1590CrossRef Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331:1587–1590CrossRef
86.
Zurück zum Zitat Fu Z, Chen W, Fang S, Zhang D, Xiao H, Zhu D (2013) Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Compd 553:316–323CrossRef Fu Z, Chen W, Fang S, Zhang D, Xiao H, Zhu D (2013) Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Compd 553:316–323CrossRef
87.
Zurück zum Zitat Gao MC, Yeh JW, Liaw PK, Zhang Y (2016) High-entropy alloys: fundamentals and applications. Springer, BerlinCrossRef Gao MC, Yeh JW, Liaw PK, Zhang Y (2016) High-entropy alloys: fundamentals and applications. Springer, BerlinCrossRef
88.
Zurück zum Zitat Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275CrossRef Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275CrossRef
Metadaten
Titel
Investigation into Plastic Deformation and Machining-Induced Subsurface Damage of High-Entropy Alloys
verfasst von
Jia Li
Qihong Fang
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3335-4_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.