Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2010

01.01.2010

Investigation of Carbide Precipitation Process and Chromium Depletion during Thermal Treatment of Alloy 690

verfasst von: S.Y. Jiao, M.C. Zhang, L. Zheng, J.X. Dong

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For the purpose of studying the effect of heat treatment on carbide morphology and chromium concentration distribution, which are critical to the resistance of alloy 690 to stress corrosion cracking (SCC), a series of thermal treatments was performed. A model taking into account the intercorrelated dynamic process between the carbide precipitation and chemical diffusion of the chromium atom from matrix to grain boundary (GB) was constructed on the basis of classical nucleation theory, Kolmogorov–Johnson–Mehl–Avrami law, and diffusion theory. The validity of this model was evaluated by comparing the simulated results of the carbide average size and chromium concentration near the GB with the corresponding measured results. A discontinuous factor was introduced based on the relation linking the interdistance between the carbides and the carbide average size; thus, the carbide morphology and chromium concentration could be predicted by this model. According to the results of the experiments and simulations, a carbide discontinuous factor smaller than 2.2 together with the chromium concentration at the GB higher than a critical value (21 wt pct) were essential for the corrosion resistance ability of the alloy, and then some proper heat-treatment conditions were obtained through predicting the value of the two variables. In addition, the effects of the grain size and composition variation on the carbide discontinuous factor and chromium concentration profile were simulated. The results indicated that an intermediate grain size of approximately 31.8 to ~63.5 μm was beneficial for effectively improving the resistance of the alloy to SCC. Simultaneously, the carbon content should be adjusted near 0.02 pct, and the chromium content should be the highest possible in its chemical composition scale.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
INCONEL is a trademark of Special Metals Corporation, Huntington, WV.
 
2
JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.
 
Literatur
1.
2.
Zurück zum Zitat O.S. Tatone: Nucl. Eng. Int., 1986, vol. 31 (383), pp. 81–83. O.S. Tatone: Nucl. Eng. Int., 1986, vol. 31 (383), pp. 81–83.
3.
Zurück zum Zitat R.S. Dutta, A. Lobo, R. Purandare, S.K. Kulkarni, and G.K. Dey: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1437–47.CrossRefADS R.S. Dutta, A. Lobo, R. Purandare, S.K. Kulkarni, and G.K. Dey: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1437–47.CrossRefADS
4.
Zurück zum Zitat P. Sengupta, N. Soudamini, C.P. Kaushik, Jagannath, R.K. Mishra, G.B. Kale, K. Raj, D. Das, and B.P. Sharma: J. Nucl. Mater., 2008, vol. 374 (1–2), pp. 185–91.CrossRefADS P. Sengupta, N. Soudamini, C.P. Kaushik, Jagannath, R.K. Mishra, G.B. Kale, K. Raj, D. Das, and B.P. Sharma: J. Nucl. Mater., 2008, vol. 374 (1–2), pp. 185–91.CrossRefADS
5.
6.
Zurück zum Zitat J.G. Gonzalez-Rodriguez, M. Casales, M.A. Espinoza-Medina, C. Angeles-Chavez, G. Izquierdo, and R. Guardian: Mater. Charact., 2003, vol. 51 (5), pp. 309–14.CrossRef J.G. Gonzalez-Rodriguez, M. Casales, M.A. Espinoza-Medina, C. Angeles-Chavez, G. Izquierdo, and R. Guardian: Mater. Charact., 2003, vol. 51 (5), pp. 309–14.CrossRef
7.
Zurück zum Zitat M. Casales, M.A. Espinoza-Medina, A. Martinez-Villafane, and J.G. Gonzalez-Rodriguez: Corrosion, 2000, vol. 56 (11), pp. 1133–39.CrossRef M. Casales, M.A. Espinoza-Medina, A. Martinez-Villafane, and J.G. Gonzalez-Rodriguez: Corrosion, 2000, vol. 56 (11), pp. 1133–39.CrossRef
8.
Zurück zum Zitat F. Carrette, M.C. Lafont, L. Leqras, L. Guinard, and B. Pieraqqi: Mater. High Temp., 2003, vol. 20 (4), pp. 581–91.CrossRef F. Carrette, M.C. Lafont, L. Leqras, L. Guinard, and B. Pieraqqi: Mater. High Temp., 2003, vol. 20 (4), pp. 581–91.CrossRef
9.
Zurück zum Zitat E.A. West and G.S. Was: Trans. Am. Nucl. Soc., 2008, vol. 98, pp. 1087–88. E.A. West and G.S. Was: Trans. Am. Nucl. Soc., 2008, vol. 98, pp. 1087–88.
10.
Zurück zum Zitat R.S. Dutta, R. Tewari, and P.K. De: Corros. Sci., 2007, vol. 49 (2), pp. 303–18.CrossRef R.S. Dutta, R. Tewari, and P.K. De: Corros. Sci., 2007, vol. 49 (2), pp. 303–18.CrossRef
11.
Zurück zum Zitat Y.Y. Chen, L.B. Chou, and H.C. Shih: Mater. Sci. Eng., A, 2005, vol. 396 (1–2), pp. 129–37. Y.Y. Chen, L.B. Chou, and H.C. Shih: Mater. Sci. Eng., A, 2005, vol. 396 (1–2), pp. 129–37.
12.
Zurück zum Zitat B. Peng, B.T. Lu, J.L. Luo, Y.C. Lu, and H.Y. Ma: J. Nucl. Mater., 2008, vol. 378 (3), pp. 333–40.CrossRefADS B. Peng, B.T. Lu, J.L. Luo, Y.C. Lu, and H.Y. Ma: J. Nucl. Mater., 2008, vol. 378 (3), pp. 333–40.CrossRefADS
13.
Zurück zum Zitat Y.Y. Chen, L.B. Chou, and H.C. Shih: Mater. Chem. Phys., 2006, vol. 97 (1), pp. 37–49.CrossRef Y.Y. Chen, L.B. Chou, and H.C. Shih: Mater. Chem. Phys., 2006, vol. 97 (1), pp. 37–49.CrossRef
14.
Zurück zum Zitat W.T. Tsai and C.H. Chou: Mater. Sci. Eng., A, 2000, vol. 288 (1), pp. 5–11.CrossRef W.T. Tsai and C.H. Chou: Mater. Sci. Eng., A, 2000, vol. 288 (1), pp. 5–11.CrossRef
15.
Zurück zum Zitat B.A. Young, X.S. Gao, T.S. Srivatsan, and P.J. King: Mater. Des., 2007, vol. 28 (2), pp. 373–79. B.A. Young, X.S. Gao, T.S. Srivatsan, and P.J. King: Mater. Des., 2007, vol. 28 (2), pp. 373–79.
16.
Zurück zum Zitat M. Casales, V.M. Salinas-Bravo, A. Martinez-Villafane, and J.G. Gonzalez-Rodriguez: Mater. Sci. Eng., 2002, vol. A332, pp. 223–30. M. Casales, V.M. Salinas-Bravo, A. Martinez-Villafane, and J.G. Gonzalez-Rodriguez: Mater. Sci. Eng., 2002, vol. A332, pp. 223–30.
17.
Zurück zum Zitat T.M. Angeliu and G.S. Was: Metall. Trans. A, 1990, vol. 21A, pp. 2097–2107.ADS T.M. Angeliu and G.S. Was: Metall. Trans. A, 1990, vol. 21A, pp. 2097–2107.ADS
18.
Zurück zum Zitat K. Stiller, J.O. Nilsson, and K. Norring: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 327–41.CrossRefADS K. Stiller, J.O. Nilsson, and K. Norring: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 327–41.CrossRefADS
19.
Zurück zum Zitat J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, and S.C. Yao: Metall. Trans. A, 1989, vol. 20A, pp. 2057–67.ADS J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, and S.C. Yao: Metall. Trans. A, 1989, vol. 20A, pp. 2057–67.ADS
20.
Zurück zum Zitat G. Sui, J.M. Titchmarsh, G.B. Heys, and J. Congleton: Corros. Sci., 1997, vol. 39 (3), pp. 565–87.CrossRef G. Sui, J.M. Titchmarsh, G.B. Heys, and J. Congleton: Corros. Sci., 1997, vol. 39 (3), pp. 565–87.CrossRef
21.
Zurück zum Zitat P.K. De and S.K. Ghosal: Corrosion, 1981, vol. 37 (6), pp. 341–49. P.K. De and S.K. Ghosal: Corrosion, 1981, vol. 37 (6), pp. 341–49.
22.
Zurück zum Zitat S.L. Yun, P.K. Hong, H.H. Jeong, S.K. Joung, and S.K. Hyuk: Corros. Sci., 2001, vol. 43 (7), pp 1321–35.CrossRef S.L. Yun, P.K. Hong, H.H. Jeong, S.K. Joung, and S.K. Hyuk: Corros. Sci., 2001, vol. 43 (7), pp 1321–35.CrossRef
23.
Zurück zum Zitat J.M. Zagal, H.F. Lopez, O. Flores, J.L. Albarran, and L. Martinez: Corros. Sci., 2008, vol. 50 (12), pp. 3371–77.CrossRef J.M. Zagal, H.F. Lopez, O. Flores, J.L. Albarran, and L. Martinez: Corros. Sci., 2008, vol. 50 (12), pp. 3371–77.CrossRef
24.
Zurück zum Zitat S.M. Brummer and C.H. Henaqer: Scripta Metall., 1986, vol. 20 (6), pp. 909–14.CrossRef S.M. Brummer and C.H. Henaqer: Scripta Metall., 1986, vol. 20 (6), pp. 909–14.CrossRef
25.
Zurück zum Zitat G.S. Was and V.B. Rajan: Metall. Trans. A, 1987, vol. 18A, pp. 1313–23.ADS G.S. Was and V.B. Rajan: Metall. Trans. A, 1987, vol. 18A, pp. 1313–23.ADS
26.
Zurück zum Zitat C.L. Briant, C.S. O’Toole, and E.L. Hall: Corrosion, 1986, vol. 42 (1), pp. 15–27. C.L. Briant, C.S. O’Toole, and E.L. Hall: Corrosion, 1986, vol. 42 (1), pp. 15–27.
27.
Zurück zum Zitat H. Hsahlaoui, H. Sidhom, and J. Philibert: Acta Mater., 2002, vol. 50 (6), pp. 1383–92.CrossRef H. Hsahlaoui, H. Sidhom, and J. Philibert: Acta Mater., 2002, vol. 50 (6), pp. 1383–92.CrossRef
28.
Zurück zum Zitat Y.F. Yin and R.G. Faulkner: Corros. Sci., 2007, vol. 49 (5), pp. 2177–97.CrossRef Y.F. Yin and R.G. Faulkner: Corros. Sci., 2007, vol. 49 (5), pp. 2177–97.CrossRef
29.
Zurück zum Zitat N. Saunders: Superalloys 1996, Proceedings of the 8th International Symposium, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 1996, pp. 101–10. N. Saunders: Superalloys 1996, Proceedings of the 8th International Symposium, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 1996, pp. 101–10.
30.
Zurück zum Zitat F.R. Beckitt and B.R. Clark: Acta Mater., 1967, vol. 15, pp. 113–29.CrossRef F.R. Beckitt and B.R. Clark: Acta Mater., 1967, vol. 15, pp. 113–29.CrossRef
31.
Zurück zum Zitat I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19 (1–2), pp. 35–50.CrossRefADS I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19 (1–2), pp. 35–50.CrossRefADS
32.
Zurück zum Zitat C. Wagner: Z. Elektrochem., 1961, vol. 65 (7–8), pp. 581–91. C. Wagner: Z. Elektrochem., 1961, vol. 65 (7–8), pp. 581–91.
33.
Zurück zum Zitat Y.N. Yu: Foundation of Materials Science, Higher Education Press, Beijing, 2006, pp. 594–633. Y.N. Yu: Foundation of Materials Science, Higher Education Press, Beijing, 2006, pp. 594–633.
34.
Zurück zum Zitat E.A. Trillo and L.E. Murr: Acta Mater., 1999, vol. 47 (1), pp. 235–45.CrossRef E.A. Trillo and L.E. Murr: Acta Mater., 1999, vol. 47 (1), pp. 235–45.CrossRef
35.
Zurück zum Zitat W.B. Pearson and M.A. Phil: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London, 1956, pp. 776–80. W.B. Pearson and M.A. Phil: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London, 1956, pp. 776–80.
36.
Zurück zum Zitat J.S. Lu, B. Wang, and Y.C. Yao: Handbook of X-Ray Diffraction Line Identification in Steel and Alloys, China Iron & Steel Research Institute, Beijing, 1990, pp. 19–62. J.S. Lu, B. Wang, and Y.C. Yao: Handbook of X-Ray Diffraction Line Identification in Steel and Alloys, China Iron & Steel Research Institute, Beijing, 1990, pp. 19–62.
37.
Zurück zum Zitat A. Morawiez, J.A. Szpunar, and D.C. Hunz: Acta Metall. Mater., 1993, vol. 41 (10), pp. 2825–32.CrossRef A. Morawiez, J.A. Szpunar, and D.C. Hunz: Acta Metall. Mater., 1993, vol. 41 (10), pp. 2825–32.CrossRef
38.
Zurück zum Zitat Q.L. Yong, Y.F. Li, B.Z. Sun, and B.R. Wu: Acta Metall., 1988, vol. 10 (5), pp. A373–A375. Q.L. Yong, Y.F. Li, B.Z. Sun, and B.R. Wu: Acta Metall., 1988, vol. 10 (5), pp. A373–A375.
39.
Zurück zum Zitat ASM Metals Handbook, ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 1387–88. ASM Metals Handbook, ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 1387–88.
40.
Zurück zum Zitat Inconel Alloy 690, Special Metals Corporation, Huntington, 2004, pp. 1–8. Inconel Alloy 690, Special Metals Corporation, Huntington, 2004, pp. 1–8.
41.
Zurück zum Zitat R. Kampmann and R. Wagner: Decomposition of Alloys, Pergamon Press, Oxford, 1984, pp. 91–103. R. Kampmann and R. Wagner: Decomposition of Alloys, Pergamon Press, Oxford, 1984, pp. 91–103.
42.
Zurück zum Zitat G. Han, J. He, S. Fukuyama, and K. Yokogawa: Acta Mater., 1998, vol. 46 (13), pp. 4559–70.CrossRef G. Han, J. He, S. Fukuyama, and K. Yokogawa: Acta Mater., 1998, vol. 46 (13), pp. 4559–70.CrossRef
43.
Zurück zum Zitat “ASTM E112 Standard Test Methods for Determining Average Grain Size,” ASTM Book of Standards, ASTM International, West Conshohocken, PA, 2004, vol. 03.01, 26 pp. “ASTM E112 Standard Test Methods for Determining Average Grain Size,” ASTM Book of Standards, ASTM International, West Conshohocken, PA, 2004, vol. 03.01, 26 pp.
Metadaten
Titel
Investigation of Carbide Precipitation Process and Chromium Depletion during Thermal Treatment of Alloy 690
verfasst von
S.Y. Jiao
M.C. Zhang
L. Zheng
J.X. Dong
Publikationsdatum
01.01.2010
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2010
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-009-0082-0

Weitere Artikel der Ausgabe 1/2010

Metallurgical and Materials Transactions A 1/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.