Skip to main content

2015 | OriginalPaper | Buchkapitel

18. Investigation of Heat Storage Performance of a Solar Pond with Potassium Chloride

verfasst von : Mehmet Karakilcik, Ismail Bozkurt, Ilker Balkaya, Ibrahim Dincer

Erschienen in: Progress in Clean Energy, Volume 2

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter concerns an experimental investigation of heat storage performance of a solar pond saturated with potassium chloride. The solar pond consists of potassium chloride water zones. The heat storage zone (HSZ) is formed as saturated brine with potassium chloride to collect and storage reaching the solar radiation. The gradient zone (GZ) is called non-convective zone (NCZ) with various density layers prepared with potassium chloride brine decreasing from HSZ to upper convective zone (UCZ). The layers consist of five different concentrations with a thickness of 10 cm each. These layers form a brine gradient to prevent heat transfer by convection from HSZ and brine layers to UCZ. The brine gradient layers act as an insulator between HSZ and UCZ. UCZ is a clean water layer. Solar radiation is especially absorbed by saturated brine zone through UCZ and NCZ. The mass capacity of the HSZ is approximately 430 kg. The measurements of the temperatures and densities of the layers are obtained by using thermocouples and hydrometers from August to November. The exergy efficiency of saturated potassium chloride brine is defined in terms of heat storage capacity of saturated brine and average representative solar energy. As a result, the maximum and minimum exergy efficiencies of the HSZ are obtained as 25.33 % in August and 9.77 % in November, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Karakilcik M, Kıymaç K, Dincer I (2006) Experimental and theoretical distributions in a solar pond. Int J Heat Mass Transfer 49:825–835CrossRef Karakilcik M, Kıymaç K, Dincer I (2006) Experimental and theoretical distributions in a solar pond. Int J Heat Mass Transfer 49:825–835CrossRef
2.
Zurück zum Zitat Bozkurt I, Karakilcik M (2012) The daily performance of a solar pond integrated with solar collectors. Sol Energ 86:1611–1620CrossRef Bozkurt I, Karakilcik M (2012) The daily performance of a solar pond integrated with solar collectors. Sol Energ 86:1611–1620CrossRef
3.
Zurück zum Zitat Karakilcik M, Bozkurt I, Dincer I (2013) Dynamic exergetic performance assessment of an integrated solar pond. Int J Exergy 12:70–86CrossRef Karakilcik M, Bozkurt I, Dincer I (2013) Dynamic exergetic performance assessment of an integrated solar pond. Int J Exergy 12:70–86CrossRef
4.
Zurück zum Zitat Karakilcik M, Dincer I, Bozkurt I, Atiz A (2013) Performance assessment of a solar pond with and without shading effect. Energ Convers Manag 65:98–107CrossRef Karakilcik M, Dincer I, Bozkurt I, Atiz A (2013) Performance assessment of a solar pond with and without shading effect. Energ Convers Manag 65:98–107CrossRef
5.
Zurück zum Zitat Bozkurt I, Atiz A, Karakilcik M, Dincer I (2014) Transparent covers effect on the performance of a cylindrical solar pond. Int J Green Energ 11:404–416CrossRef Bozkurt I, Atiz A, Karakilcik M, Dincer I (2014) Transparent covers effect on the performance of a cylindrical solar pond. Int J Green Energ 11:404–416CrossRef
6.
Zurück zum Zitat Subhakar D, Murthy SS (1991) Experiments on a magnesium chloride saturated solar pond. Renew Energ 5–6:655–660CrossRef Subhakar D, Murthy SS (1991) Experiments on a magnesium chloride saturated solar pond. Renew Energ 5–6:655–660CrossRef
7.
Zurück zum Zitat Subhakar D, Murthy SS (1993) Saturated solar ponds: 2. Parametric studies. Sol Energ 50:307–319CrossRef Subhakar D, Murthy SS (1993) Saturated solar ponds: 2. Parametric studies. Sol Energ 50:307–319CrossRef
8.
Zurück zum Zitat Subhakar D, Murthy SS (1994) Saturated solar ponds: 3. Experimental verification. Sol Energ 53:469–472CrossRef Subhakar D, Murthy SS (1994) Saturated solar ponds: 3. Experimental verification. Sol Energ 53:469–472CrossRef
9.
Zurück zum Zitat Kurt H, Ozkaymak M, Binark AK (2006) Experimental and numerical analysis of sodium-carbonate salt gradient solar pond performance under simulated solar radiation. Appl Energ 83:324–342CrossRef Kurt H, Ozkaymak M, Binark AK (2006) Experimental and numerical analysis of sodium-carbonate salt gradient solar pond performance under simulated solar radiation. Appl Energ 83:324–342CrossRef
10.
Zurück zum Zitat Dincer I (2002) The role of exergy in energy policy making. Energ Pol 30:137–149CrossRef Dincer I (2002) The role of exergy in energy policy making. Energ Pol 30:137–149CrossRef
11.
Zurück zum Zitat Dincer I, Rosen MA (2013) Exergy: energy, environment and sustainable development, 2nd edn. Elsevier Ltd., Oxford, UK. ISBN 978-0-08-097089-9 Dincer I, Rosen MA (2013) Exergy: energy, environment and sustainable development, 2nd edn. Elsevier Ltd., Oxford, UK. ISBN 978-0-08-097089-9
12.
Zurück zum Zitat Hawlader MNA (1980) The influence of the extinction coefficient on the effectiveness of solar ponds. Sol Energ 25:461–464CrossRef Hawlader MNA (1980) The influence of the extinction coefficient on the effectiveness of solar ponds. Sol Energ 25:461–464CrossRef
13.
Zurück zum Zitat Bryant HC, Colbeck I (1977) A solar pond for London. Sol Energ 19:321–322CrossRef Bryant HC, Colbeck I (1977) A solar pond for London. Sol Energ 19:321–322CrossRef
14.
Zurück zum Zitat Petala R (2003) Exergy of undiluted thermal radiations. Sol Energ 74:469–488CrossRef Petala R (2003) Exergy of undiluted thermal radiations. Sol Energ 74:469–488CrossRef
15.
Zurück zum Zitat Sun H, Feistel R, Koch M, Markoe A (2008) New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid. Deep Sea Res Oceanogr Res Paper 55:1304–1310CrossRef Sun H, Feistel R, Koch M, Markoe A (2008) New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid. Deep Sea Res Oceanogr Res Paper 55:1304–1310CrossRef
Metadaten
Titel
Investigation of Heat Storage Performance of a Solar Pond with Potassium Chloride
verfasst von
Mehmet Karakilcik
Ismail Bozkurt
Ilker Balkaya
Ibrahim Dincer
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17031-2_18