Skip to main content
Erschienen in: Journal of Electronic Materials 4/2021

21.01.2021 | Original Research Article

Investigation of Optical and Diode Parameters of 9-[(5-Nitropyridin-2-Aminoethyl) Iminiomethyl]-Anthracene Thin Film

verfasst von: Ümmühan Akın, Serkan Sayın, Nihat Tuğluoğlu, Ö. Faruk Yüksel

Erschienen in: Journal of Electronic Materials | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The optical, structural and electrical behavior of thin films has been a highly important topic in scientific works and technological applications for many years. Because of this importance, the characteristic behaviors of the film forms are continuously investigated by producing different materials. The goal of the present study is to address in detail the evaluation of the optical properties of 9-[(5-nitropyridin-2-aminoethyl) iminiomethyl]-anthracene (NAMA) organic material and also its use in diode application. For that, the NAMA material known as an organic semiconductor has been synthesized from the reaction between 2-(2-aminoethylamino)-5-nitropyridine and 9-antracene carboxaldehyde under mild reaction conditions. Then, the material dissolved in an organic solvent was grown in thin film form using drop casting on soda-lime glass substrate. Furthermore, the transmittance and reflectance spectra of the grown film were measured in the wavelengths ranging from 200 nm to 2400 nm. The fundamental optical constants such as absorption coefficient (\( \alpha \)), optical band energy gap (\( E_{\text{g}} \)), refractive index (\( n \)) and the dielectric parameters of the thin film were calculated from the optical spectrum values obtained. The optical band gap energy of the film was found as 2.72 eV from standard optical analysis. However, the dispersion parameters were determined in regard to the Wemple-DiDomenico single oscillator model, and the dispersion energy (\( E_{\text{d}} \)) and the single oscillator energy (\( E_{0} \)) were found as 14.12 eV and 6.80 eV, respectively. In addition, the Au/NAMA/n-Si/In Schottky diode to determine the electrical parameters was fabricated and the values of ideality factor and barrier height of the fabricated device were obtained as 2.61 eV and 0.724 eV, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat J.G. Kim, Y. Hwang, H. Hwang, J.H. Choi, Y.W. Park, and B.-K. Ju, Sci. Rep. 10, 5631 (2020).CrossRef J.G. Kim, Y. Hwang, H. Hwang, J.H. Choi, Y.W. Park, and B.-K. Ju, Sci. Rep. 10, 5631 (2020).CrossRef
3.
Zurück zum Zitat S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, and Y. Cao, Nat. Photonics 14, 300 (2020).CrossRef S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, and Y. Cao, Nat. Photonics 14, 300 (2020).CrossRef
4.
Zurück zum Zitat S. Fiat Varol, S. Sayin, S. Eymur, Z. Merdan, and D. Ünal, Org. Electron. 31, 25 (2016).CrossRef S. Fiat Varol, S. Sayin, S. Eymur, Z. Merdan, and D. Ünal, Org. Electron. 31, 25 (2016).CrossRef
5.
Zurück zum Zitat E. Marquez, A.M. Bernal-Oliva, J.M. Gonzalez-Leal, R. Prieto-Alcon, A. Ledesma, R. Jimenez-Garay, and I. Martil, Mater. Chem. Phys. 60, 231 (1999).CrossRef E. Marquez, A.M. Bernal-Oliva, J.M. Gonzalez-Leal, R. Prieto-Alcon, A. Ledesma, R. Jimenez-Garay, and I. Martil, Mater. Chem. Phys. 60, 231 (1999).CrossRef
6.
Zurück zum Zitat J. Tauc, R. Grigorovic, and A. Vanc, Phys. Stat. Sol. 15, 627 (1966).CrossRef J. Tauc, R. Grigorovic, and A. Vanc, Phys. Stat. Sol. 15, 627 (1966).CrossRef
7.
Zurück zum Zitat M. Yıldırım, A. Erdoğan, Ö.F. Yüksel, M. Kuş, M. Can, Ü. Akın, and N. Tuğluoğlu, J. Mater. Sci. Mater. Electron. 30, 10408 (2019).CrossRef M. Yıldırım, A. Erdoğan, Ö.F. Yüksel, M. Kuş, M. Can, Ü. Akın, and N. Tuğluoğlu, J. Mater. Sci. Mater. Electron. 30, 10408 (2019).CrossRef
8.
Zurück zum Zitat Z. Kişnişci, F. Özel, Ö.F. Yüksel, and N. Tuğluoğlu, J. Mater. Sci. Mater. Electron. 27, 10128 (2016).CrossRef Z. Kişnişci, F. Özel, Ö.F. Yüksel, and N. Tuğluoğlu, J. Mater. Sci. Mater. Electron. 27, 10128 (2016).CrossRef
9.
Zurück zum Zitat M. Yıldırım, F. Özel, N. Tuğluoğlu, Ö.F. Yüksel, and M. Kuş, J. Alloys Compd. 666, 144 (2016).CrossRef M. Yıldırım, F. Özel, N. Tuğluoğlu, Ö.F. Yüksel, and M. Kuş, J. Alloys Compd. 666, 144 (2016).CrossRef
10.
Zurück zum Zitat S. Theingi, Direct measure of band edge optical absorption of silicon nanostructures using photothermal deflection spectroscopy. Master’s thesis, Colorado School of Mines, Colorado, (2015) pp. 25–27. S. Theingi, Direct measure of band edge optical absorption of silicon nanostructures using photothermal deflection spectroscopy. Master’s thesis, Colorado School of Mines, Colorado, (2015) pp. 25–27.
11.
Zurück zum Zitat Ü. Akın, H. Şafak, V. Eskizeybek, A. Avcı, and Ö.F. Yüksel, J. Nanoelectron. Optoelectron. 9, 99 (2014).CrossRef Ü. Akın, H. Şafak, V. Eskizeybek, A. Avcı, and Ö.F. Yüksel, J. Nanoelectron. Optoelectron. 9, 99 (2014).CrossRef
13.
Zurück zum Zitat S. Zaynobidinov, R.G. Ikramov, and R.M. Jalalov, J. Appl. Spectrosc. 78, 223 (2011).CrossRef S. Zaynobidinov, R.G. Ikramov, and R.M. Jalalov, J. Appl. Spectrosc. 78, 223 (2011).CrossRef
14.
Zurück zum Zitat Y. Natsume, H. Sakata, and T. Hirayama, Phys. Stat. Sol. (A) 148, 485 (1995).CrossRef Y. Natsume, H. Sakata, and T. Hirayama, Phys. Stat. Sol. (A) 148, 485 (1995).CrossRef
15.
17.
18.
Zurück zum Zitat J. Petzelt and I. Rychetský, in Encyclopedia of Condensed Matter Physics, ed. By F. Bassani, J. Riedl, P. Wyder, (Elsevier, 2005), p. 426. J. Petzelt and I. Rychetský, in Encyclopedia of Condensed Matter Physics, ed. By F. Bassani, J. Riedl, P. Wyder, (Elsevier, 2005), p. 426.
19.
Zurück zum Zitat M. Fox, Optical Properties of Solids (New York: Oxford University Press, 2001), p. 6. M. Fox, Optical Properties of Solids (New York: Oxford University Press, 2001), p. 6.
20.
Zurück zum Zitat S.I. Mussatto, Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, (Elsevier, 2016), p. 105. S.I. Mussatto, Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, (Elsevier, 2016), p. 105.
21.
Zurück zum Zitat X. Yu, B. Yi, F. Liu, and X. Wang, React. Funct. Polym. 68, 1557 (2008).CrossRef X. Yu, B. Yi, F. Liu, and X. Wang, React. Funct. Polym. 68, 1557 (2008).CrossRef
22.
Zurück zum Zitat M.T. Sebastian, Dielectric Materials for Wireless Communication, (Elsevier, 2008), pp. 11–47. M.T. Sebastian, Dielectric Materials for Wireless Communication, (Elsevier, 2008), pp. 11–47.
23.
Zurück zum Zitat E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts (Clarendon: Oxford Press, 1988), p. 40. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts (Clarendon: Oxford Press, 1988), p. 40.
24.
Zurück zum Zitat S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981), pp. 378–381. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981), pp. 378–381.
25.
Zurück zum Zitat S. Fiat Varol, S. Sayin, S. Eymur, and K. Uzun, Mater. Res. Bull. 85, 249 (2017).CrossRef S. Fiat Varol, S. Sayin, S. Eymur, and K. Uzun, Mater. Res. Bull. 85, 249 (2017).CrossRef
Metadaten
Titel
Investigation of Optical and Diode Parameters of 9-[(5-Nitropyridin-2-Aminoethyl) Iminiomethyl]-Anthracene Thin Film
verfasst von
Ümmühan Akın
Serkan Sayın
Nihat Tuğluoğlu
Ö. Faruk Yüksel
Publikationsdatum
21.01.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 4/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08690-x

Weitere Artikel der Ausgabe 4/2021

Journal of Electronic Materials 4/2021 Zur Ausgabe

Asian Consortium ACCMS–International Conference ICMG 2020

Micromechanical Analysis for Iron-Based Composites Under Large Deformations

Neuer Inhalt