Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2019

20.09.2019 | Research Article - Petroleum Engineering

Investigation of the Influence of Natural Cavities on Hydraulic Fracturing Using Phase Field Method

verfasst von: Zhiyuan Liu, Qianli Lu, Yuan Sun, Xuhai Tang, Zuliang Shao, Zheng Weng

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the influence of natural cavities on the propagation of hydraulic fractures is investigated using the phase field method. The deflection behaviour of a fracture during its propagation is firstly verified against published experimental data. Then, a sensitivity analysis on the mechanical behaviour of fracture propagation near a cavity is conducted. The fracture deflection is quantified in terms of the deviation distance and deflection point. The influence of the Young’s modulus ratio between the cavity and rock mass (Er= Ecave/Erock), the differential stress (Sd= Sx − Sy) and the relative spatial position of the fracture and cavity (lr) on the propagation trajectory are considered. Simulation results show that with the decrease in Er, crack path deviation becomes more prominent. With the increase in Sd, hydraulic fractures tend to propagate along the direction of maximum horizontal geostress. As lr varies, the deflection of the hydraulic fracture can be classified into three regimes: (1) the deflection is negligible; (2) the hydraulic fracture deflects and approaches the natural cavity, but does not connect with it; (3) the hydraulic fracture deflects and connects with the natural cavity. The results could be used as guidance for field design of stimulation scheme in carbonate oil/gas reservoirs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Tang, X.; Wu, S.; Zheng, C.; Zhang, J.: A novel virtual node method for polygonal elements. Appl. Math. Mech. 30(10), 1233 (2009)MathSciNetMATHCrossRef Tang, X.; Wu, S.; Zheng, C.; Zhang, J.: A novel virtual node method for polygonal elements. Appl. Math. Mech. 30(10), 1233 (2009)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Rayudu, N.M.; Tang, X.; Singh, G.: Simulating three dimensional hydraulic fracture propagation using displacement correlation method. Tunn. Undergr. Space Technol. 85, 84–91 (2019)CrossRef Rayudu, N.M.; Tang, X.; Singh, G.: Simulating three dimensional hydraulic fracture propagation using displacement correlation method. Tunn. Undergr. Space Technol. 85, 84–91 (2019)CrossRef
4.
Zurück zum Zitat Warren, J.; Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(03), 245–255 (1963)CrossRef Warren, J.; Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(03), 245–255 (1963)CrossRef
9.
Zurück zum Zitat Dahi Taleghani, A.; Olson, J.E.: How natural fractures could affect hydraulic-fracture geometry. SPE J. 19(01), 161–171 (2013)CrossRef Dahi Taleghani, A.; Olson, J.E.: How natural fractures could affect hydraulic-fracture geometry. SPE J. 19(01), 161–171 (2013)CrossRef
10.
Zurück zum Zitat Gu, H.; Weng, X.; Lund, J.B.; Mack, M.G.; Ganguly, U.; Suarez-Rivera, R.: Hydraulic fracture crossing natural fracture at nonorthogonal angles: a criterion and its validation. SPE Prod. Oper. 27(01), 20–26 (2012) Gu, H.; Weng, X.; Lund, J.B.; Mack, M.G.; Ganguly, U.; Suarez-Rivera, R.: Hydraulic fracture crossing natural fracture at nonorthogonal angles: a criterion and its validation. SPE Prod. Oper. 27(01), 20–26 (2012)
11.
Zurück zum Zitat Potluri, N.; Zhu, D.; Hill, A.D.: The effect of natural fractures on hydraulic fracture propagation. In: SPE European Formation Damage Conference 2005. Society of Petroleum Engineers Potluri, N.; Zhu, D.; Hill, A.D.: The effect of natural fractures on hydraulic fracture propagation. In: SPE European Formation Damage Conference 2005. Society of Petroleum Engineers
12.
Zurück zum Zitat Weng, X.; Kresse, O.; Cohen, C.E.; Wu, R.; Gu, H.: Modeling of hydraulic fracture network propagation in a naturally fractured formation. In: SPE Hydraulic Fracturing Technology Conference 2011. Society of Petroleum Engineers Weng, X.; Kresse, O.; Cohen, C.E.; Wu, R.; Gu, H.: Modeling of hydraulic fracture network propagation in a naturally fractured formation. In: SPE Hydraulic Fracturing Technology Conference 2011. Society of Petroleum Engineers
13.
Zurück zum Zitat Williams, B.B.: Fluid loss from hydraulically induced fractures. J. Petrol. Technol. 22, 882 (1970)CrossRef Williams, B.B.: Fluid loss from hydraulically induced fractures. J. Petrol. Technol. 22, 882 (1970)CrossRef
14.
Zurück zum Zitat Carter, R.: Derivation of the general equation for estimating the extent of the fractured area. Appendix I of “Optimum Fluid Characteristics for Fracture Extension,” Drilling and Production Practice, GC Howard and CR Fast, New York, New York, USA, American Petroleum Institute, pp. 261–269 (1957) Carter, R.: Derivation of the general equation for estimating the extent of the fractured area. Appendix I of “Optimum Fluid Characteristics for Fracture Extension,” Drilling and Production Practice, GC Howard and CR Fast, New York, New York, USA, American Petroleum Institute, pp. 261–269 (1957)
15.
Zurück zum Zitat Settari, A.: A new general model of fluid loss in hydraulic fracturing. Soc. Petrol. Eng. J. 25(04), 491–501 (1985)CrossRef Settari, A.: A new general model of fluid loss in hydraulic fracturing. Soc. Petrol. Eng. J. 25(04), 491–501 (1985)CrossRef
16.
Zurück zum Zitat Geertsma, J.; Klerk, F.D.: A rapid method of predicting width and extent of hydraulically induced fractures. J. Petrol. Technol. 21(12), 1571–1581 (1969)CrossRef Geertsma, J.; Klerk, F.D.: A rapid method of predicting width and extent of hydraulically induced fractures. J. Petrol. Technol. 21(12), 1571–1581 (1969)CrossRef
17.
Zurück zum Zitat Zheltov, A.: 3. Formation of vertical fractures by means of highly viscous liquid (1955) Zheltov, A.: 3. Formation of vertical fractures by means of highly viscous liquid (1955)
21.
Zurück zum Zitat Lecampion, B.: An extended finite element method for hydraulic fracture problems. Int. J. Numer. Methods Biomed. Eng. 25(2), 121–133 (2009)MathSciNetMATH Lecampion, B.: An extended finite element method for hydraulic fracture problems. Int. J. Numer. Methods Biomed. Eng. 25(2), 121–133 (2009)MathSciNetMATH
22.
Zurück zum Zitat Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng. 45(5), 601–620 (1999)MATHCrossRef Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng. 45(5), 601–620 (1999)MATHCrossRef
23.
Zurück zum Zitat Moës, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46(1), 131–150 (2015)MathSciNetMATHCrossRef Moës, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46(1), 131–150 (2015)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Olson, J.: Fracture pattern development: the effects of subcritical crack growth and mechanical interaction. J. Geophys. Res. 93, 12251–12265 (1993)CrossRef Olson, J.: Fracture pattern development: the effects of subcritical crack growth and mechanical interaction. J. Geophys. Res. 93, 12251–12265 (1993)CrossRef
26.
Zurück zum Zitat Olson, J.E.: Predicting fracture swarms—the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Geol. Soc. Lond. Spec. Publ. 231(1), 73–88 (2004)CrossRef Olson, J.E.: Predicting fracture swarms—the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Geol. Soc. Lond. Spec. Publ. 231(1), 73–88 (2004)CrossRef
28.
Zurück zum Zitat Olson, J.E.: Multi-fracture propagation modeling: applications to hydraulic fracturing in shales and tight gas sands (2008) Olson, J.E.: Multi-fracture propagation modeling: applications to hydraulic fracturing in shales and tight gas sands (2008)
29.
Zurück zum Zitat Olson, J.E.; Taleghani, A.D.: Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2009) Olson, J.E.; Taleghani, A.D.: Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2009)
30.
Zurück zum Zitat Wu, K.; Olson, J.E.: Investigation of critical in situ and injection factors in multi-frac treatments: guidelines for controlling fracture complexity. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2013) Wu, K.; Olson, J.E.: Investigation of critical in situ and injection factors in multi-frac treatments: guidelines for controlling fracture complexity. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2013)
31.
Zurück zum Zitat Wu, K.; Olson, J.E.: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells. SPE journal 20(02), 337–346 (2015)CrossRef Wu, K.; Olson, J.E.: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells. SPE journal 20(02), 337–346 (2015)CrossRef
32.
Zurück zum Zitat Zhang, X.; Jeffrey, R.G.: Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture. J. Geophys. Res. Solid Earth 117(B12), 12402 (2012)CrossRef Zhang, X.; Jeffrey, R.G.: Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture. J. Geophys. Res. Solid Earth 117(B12), 12402 (2012)CrossRef
33.
Zurück zum Zitat Zhang, X.; Jeffrey, R.G.: Role of overpressurized fluid and fluid-driven fractures in forming fracture networks. J. Geochem. Explor. 144, 194–207 (2014)CrossRef Zhang, X.; Jeffrey, R.G.: Role of overpressurized fluid and fluid-driven fractures in forming fracture networks. J. Geochem. Explor. 144, 194–207 (2014)CrossRef
34.
Zurück zum Zitat Boone, T.J.; Ingraffea, A.R.: A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Meth. Geomech. 14(1), 27–47 (1990)CrossRef Boone, T.J.; Ingraffea, A.R.: A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Meth. Geomech. 14(1), 27–47 (1990)CrossRef
36.
Zurück zum Zitat Carrier, B.; Granet, S.: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng. Fract. Mech. 79, 312–328 (2012)CrossRef Carrier, B.; Granet, S.: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng. Fract. Mech. 79, 312–328 (2012)CrossRef
37.
Zurück zum Zitat Mohammadnejad, T.; Khoei, A.: An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem. Anal. Des. 73, 77–95 (2013)MathSciNetMATHCrossRef Mohammadnejad, T.; Khoei, A.: An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem. Anal. Des. 73, 77–95 (2013)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Zhang, G.X.; Xu, L.I.; Haifeng, L.I.: Simulation of hydraulic fracture utilizing numerical manifold method. Sci. China Technol. Sci. 58(9), 1542–1557 (2015)CrossRef Zhang, G.X.; Xu, L.I.; Haifeng, L.I.: Simulation of hydraulic fracture utilizing numerical manifold method. Sci. China Technol. Sci. 58(9), 1542–1557 (2015)CrossRef
44.
Zurück zum Zitat Liu, Q.; Sun, L.; Tang, X.; Guo, B.: Modelling hydraulic fracturing with a point-based approximation for the maximum principal stress criterion. Rock Mech. Rock Eng. 52(6), 1781–1801 (2018)CrossRef Liu, Q.; Sun, L.; Tang, X.; Guo, B.: Modelling hydraulic fracturing with a point-based approximation for the maximum principal stress criterion. Rock Mech. Rock Eng. 52(6), 1781–1801 (2018)CrossRef
47.
Zurück zum Zitat Jirásek, M.: Mathematical analysis of strain localization. Rev. Eur. Génie Civ. 11(7–8), 977–991 (2007)CrossRef Jirásek, M.: Mathematical analysis of strain localization. Rev. Eur. Génie Civ. 11(7–8), 977–991 (2007)CrossRef
48.
Zurück zum Zitat Simo, J.C.; Ju, J.W.: Strain- and stress-based continuum damage models—I. Formul. Math. Comput. Model. 12(3), 378 (1987)MATH Simo, J.C.; Ju, J.W.: Strain- and stress-based continuum damage models—I. Formul. Math. Comput. Model. 12(3), 378 (1987)MATH
49.
Zurück zum Zitat Bažant, Z.P.; Belytschko, T.B.; Chang, T.-P.: Continuum theory for strain-softening. J. Eng. Mech. 110(12), 1666–1692 (1984)CrossRef Bažant, Z.P.; Belytschko, T.B.; Chang, T.-P.: Continuum theory for strain-softening. J. Eng. Mech. 110(12), 1666–1692 (1984)CrossRef
50.
Zurück zum Zitat Pijaudier-Cabot, G.; Bažant, Z.P.: Nonlocal damage theory. J. Eng. Mech. 113(10), 1512–1533 (1987)MATHCrossRef Pijaudier-Cabot, G.; Bažant, Z.P.: Nonlocal damage theory. J. Eng. Mech. 113(10), 1512–1533 (1987)MATHCrossRef
51.
Zurück zum Zitat Frémond, M.; Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33(8), 1083–1103 (1996)MathSciNetMATHCrossRef Frémond, M.; Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33(8), 1083–1103 (1996)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Lorentz, E.; Andrieux, S.: A variational formulation for nonlocal damage models. Int. J. Plast 15(2), 119–138 (1999)MATHCrossRef Lorentz, E.; Andrieux, S.: A variational formulation for nonlocal damage models. Int. J. Plast 15(2), 119–138 (1999)MATHCrossRef
53.
Zurück zum Zitat Pham, K.; Amor, H.; Marigo, J.J.; Maurini, C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech 20(4), 618–652 (2010)CrossRef Pham, K.; Amor, H.; Marigo, J.J.; Maurini, C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech 20(4), 618–652 (2010)CrossRef
57.
Zurück zum Zitat Nguyen, T.T.; Yvonnet, J.; Bornert, M.; Chateau, C.; Sab, K.; Romani, R.; Le Roy, R.: On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract. 197(2), 213–226 (2016)CrossRef Nguyen, T.T.; Yvonnet, J.; Bornert, M.; Chateau, C.; Sab, K.; Romani, R.; Le Roy, R.: On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract. 197(2), 213–226 (2016)CrossRef
58.
59.
Zurück zum Zitat Amiri, F.; Millán, D.; Shen, Y.; Rabczuk, T.; Arroyo, M.: Phase-field modeling of fracture in linear thin shells. Theor. Appl. Fract. Mech. 69(2), 102–109 (2014)CrossRef Amiri, F.; Millán, D.; Shen, Y.; Rabczuk, T.; Arroyo, M.: Phase-field modeling of fracture in linear thin shells. Theor. Appl. Fract. Mech. 69(2), 102–109 (2014)CrossRef
66.
Zurück zum Zitat Biot, M.A.; Tolstoy, I.: Acoustics, elasticity, and thermodynamics of porous media: twenty-one papers. Acoustical Society of Amer, New York (1992) Biot, M.A.; Tolstoy, I.: Acoustics, elasticity, and thermodynamics of porous media: twenty-one papers. Acoustical Society of Amer, New York (1992)
67.
Zurück zum Zitat Crouch, S.L.; Starfield, A.M.; Rizzo, F.: Boundary element methods in solid mechanics. J. Appl. Mech. 50, 704 (1983)CrossRef Crouch, S.L.; Starfield, A.M.; Rizzo, F.: Boundary element methods in solid mechanics. J. Appl. Mech. 50, 704 (1983)CrossRef
70.
Zurück zum Zitat Chen, M.; Zhang, G.Q.: Laboratory measurement and interpretation of the fracture toughness of formation rocks at great depth. J. Petrol. Sci. Eng. 41(1), 221–231 (2004)CrossRef Chen, M.; Zhang, G.Q.: Laboratory measurement and interpretation of the fracture toughness of formation rocks at great depth. J. Petrol. Sci. Eng. 41(1), 221–231 (2004)CrossRef
71.
Zurück zum Zitat Josh, M.; Esteban, L.; Piane, C.D.; Sarout, J.; Dewhurst, D.N.; Clennell, M.B.: Laboratory characterisation of shale properties. J. Petrol. Sci. Eng. 88–89(2), 107–124 (2012)CrossRef Josh, M.; Esteban, L.; Piane, C.D.; Sarout, J.; Dewhurst, D.N.; Clennell, M.B.: Laboratory characterisation of shale properties. J. Petrol. Sci. Eng. 88–89(2), 107–124 (2012)CrossRef
72.
Zurück zum Zitat Senseny, P.; Pfeifle, T.: Fracture toughness of sandstones and shales (1984) Senseny, P.; Pfeifle, T.: Fracture toughness of sandstones and shales (1984)
73.
Zurück zum Zitat Li, Y.; Hou, J.; Ma, X.: Data integration in characterizing a fracture-cavity reservoir, Tahe oilfield, Tarim basin, China. Arab. J. Geosci. 9(8), 532 (2016)CrossRef Li, Y.; Hou, J.; Ma, X.: Data integration in characterizing a fracture-cavity reservoir, Tahe oilfield, Tarim basin, China. Arab. J. Geosci. 9(8), 532 (2016)CrossRef
74.
Zurück zum Zitat Weng, Z.; Zhang, Y.; Wu, Y.; Fan, K.; Wang, F.: An experimental study on the influence of caves in reservoirs on hydraulic fractures propagation. Reservoir Evaluation and Development (2019). (in press) Weng, Z.; Zhang, Y.; Wu, Y.; Fan, K.; Wang, F.: An experimental study on the influence of caves in reservoirs on hydraulic fractures propagation. Reservoir Evaluation and Development (2019). (in press)
Metadaten
Titel
Investigation of the Influence of Natural Cavities on Hydraulic Fracturing Using Phase Field Method
verfasst von
Zhiyuan Liu
Qianli Lu
Yuan Sun
Xuhai Tang
Zuliang Shao
Zheng Weng
Publikationsdatum
20.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2019
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04122-z

Weitere Artikel der Ausgabe 12/2019

Arabian Journal for Science and Engineering 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.