Skip to main content
Erschienen in: Optical Memory and Neural Networks 1/2023

01.11.2023

Investigation of the Training Data Set Influence on the Accuracy of the Optical Laguerre-Gaussian Modes Recognition

verfasst von: A. V. Bekhterev

Erschienen in: Optical Memory and Neural Networks | Sonderheft 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the accuracy of convolutional neural network recognition of Laguerre and Hermite-Gauss optical modes with geometric distortions in the form of affine transformations. The influence of training data sampling on the accuracy is analyzed. The ability of a convolutional neural network to recognize Laguerre and Hermite-Gaussian optical modes with geometric distortions caused by environmental distortions and described by affine transformations was also examined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang, Z., Wang, P., Liu, J., Xiong, W., He, Y., Xiao, J., Ye, H., Li, Y., Chen, S., and Fan, D., All-optical signal processing of vortex beams with diffractive Deep Neural Networks, Phys. Rev. Appl., 2021, vol. 15, no. 1, pp. 014037.CrossRef Huang, Z., Wang, P., Liu, J., Xiong, W., He, Y., Xiao, J., Ye, H., Li, Y., Chen, S., and Fan, D., All-optical signal processing of vortex beams with diffractive Deep Neural Networks, Phys. Rev. Appl., 2021, vol. 15, no. 1, pp. 014037.CrossRef
2.
Zurück zum Zitat He, Y., Wang, P., Wang, C., Liu, J., Ye, H., Zhou, X., Li, Y., Chen, S., Zhang, X., and Fan, D., All-optical signal processing in structured light multiplexing with dielectric meta-optics, ACS Photonics, 2020, vol. 7, no. 1, pp. 135–146.CrossRef He, Y., Wang, P., Wang, C., Liu, J., Ye, H., Zhou, X., Li, Y., Chen, S., Zhang, X., and Fan, D., All-optical signal processing in structured light multiplexing with dielectric meta-optics, ACS Photonics, 2020, vol. 7, no. 1, pp. 135–146.CrossRef
3.
Zurück zum Zitat Kotlyar, V.V., Kovalev, A.A., and Porfirev, A.P. Vortex Laser Beams, CRC Press, 2018.CrossRef Kotlyar, V.V., Kovalev, A.A., and Porfirev, A.P. Vortex Laser Beams, CRC Press, 2018.CrossRef
4.
Zurück zum Zitat Levy, U., Silberberg, Y., and Davidson, N., Mathematics of vectorial Gaussian beams, Adv. Opt. Photon., 2019, vol. 11, no. 4, pp. 828–891.CrossRef Levy, U., Silberberg, Y., and Davidson, N., Mathematics of vectorial Gaussian beams, Adv. Opt. Photon., 2019, vol. 11, no. 4, pp. 828–891.CrossRef
5.
Zurück zum Zitat Kovalev, A.A., Kotlyar, V.V., and Kalinkina, D.S., Orbital angular momentum and topological charge of a Gaussian beam with multiple optical vortices, Comput. Opt., 2020, vol. 44, no. 1, pp. 34–39.CrossRef Kovalev, A.A., Kotlyar, V.V., and Kalinkina, D.S., Orbital angular momentum and topological charge of a Gaussian beam with multiple optical vortices, Comput. Opt., 2020, vol. 44, no. 1, pp. 34–39.CrossRef
6.
Zurück zum Zitat Mendoza-Hernández, J., Arroyo-Carrasco, M.L., Iturbe-Castillo, M.D., and Chávez-Cerda, S., Laguerre–Gauss beams versus Bessel beams showdown: peer comparison, Opt. Lett., 2015, vol. 40, no. 16, pp. 3739–3742.CrossRef Mendoza-Hernández, J., Arroyo-Carrasco, M.L., Iturbe-Castillo, M.D., and Chávez-Cerda, S., Laguerre–Gauss beams versus Bessel beams showdown: peer comparison, Opt. Lett., 2015, vol. 40, no. 16, pp. 3739–3742.CrossRef
7.
Zurück zum Zitat Kotlyar, V.V., Kovalev, A.A., and Volyar, A.V., Topological charge of optical vortices and their superpositions, Comput. Opt., 2020, vol. 44, no. 2, pp 145–154. Kotlyar, V.V., Kovalev, A.A., and Volyar, A.V., Topological charge of optical vortices and their superpositions, Comput. Opt., 2020, vol. 44, no. 2, pp 145–154.
8.
Zurück zum Zitat Kotlyar, V.V. and Kovalev, A.A., Topological charge of a superposition of two Bessel-Gaussian beams, Comput. Opt., 2021, vol. 45, no. 1, pp. 19–28.CrossRef Kotlyar, V.V. and Kovalev, A.A., Topological charge of a superposition of two Bessel-Gaussian beams, Comput. Opt., 2021, vol. 45, no. 1, pp. 19–28.CrossRef
9.
Zurück zum Zitat Kotlyar, V.V. and Kovalev, A.A., Sinusoidal Gaussian optical vortex as a superposition of two hypergeometric beams, Comput. Opt., 2022, vol. 46, no. 1, pp. 16–21. Kotlyar, V.V. and Kovalev, A.A., Sinusoidal Gaussian optical vortex as a superposition of two hypergeometric beams, Comput. Opt., 2022, vol. 46, no. 1, pp. 16–21.
10.
Zurück zum Zitat Kovalev, A.A., Kotlyar, V.V., Kalinkina, D.S., and Nalimov, A.G., Off-axis elliptic Gaussian beams with an intrinsic orbital angular momentum, Comput. Opt., 2021, vol. 45, no. 6, pp. 809–817.CrossRef Kovalev, A.A., Kotlyar, V.V., Kalinkina, D.S., and Nalimov, A.G., Off-axis elliptic Gaussian beams with an intrinsic orbital angular momentum, Comput. Opt., 2021, vol. 45, no. 6, pp. 809–817.CrossRef
11.
Zurück zum Zitat Naik, D.N. and Viswanathan, N.K., Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer, J. Opt., 2016, vol. 18, no. 9, pp. 095601.CrossRef Naik, D.N. and Viswanathan, N.K., Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer, J. Opt., 2016, vol. 18, no. 9, pp. 095601.CrossRef
12.
Zurück zum Zitat Kotlyar, V.V., Kovalev, A.A., Kozlova, E.S., Savelyeva, A.A., and Stafeev, S.S., New type of vortex laser beams: Squared Laguerre–Gaussian beam, Optik, 2022, vol. 270, pp. 169916.CrossRef Kotlyar, V.V., Kovalev, A.A., Kozlova, E.S., Savelyeva, A.A., and Stafeev, S.S., New type of vortex laser beams: Squared Laguerre–Gaussian beam, Optik, 2022, vol. 270, pp. 169916.CrossRef
13.
Zurück zum Zitat Kotlyar, V.V. and Kovalev, A.A., Topological charge of optical vortices devoid of radial symmetry, Comput. Opt., 2020; vol. 44, no. 4, pp. 510–518. Kotlyar, V.V. and Kovalev, A.A., Topological charge of optical vortices devoid of radial symmetry, Comput. Opt., 2020; vol. 44, no. 4, pp. 510–518.
14.
Zurück zum Zitat Sayan, Ö.F., Gerçekcioğlu, H., and Baykal, Y., Hermite Gaussian beam scintillations in weak atmospheric turbulence for aerial vehicle laser communications, Opt. Commun., 2020, vol. 458, pp. 124735.CrossRef Sayan, Ö.F., Gerçekcioğlu, H., and Baykal, Y., Hermite Gaussian beam scintillations in weak atmospheric turbulence for aerial vehicle laser communications, Opt. Commun., 2020, vol. 458, pp. 124735.CrossRef
15.
Zurück zum Zitat Luan, H., Lin, D., Li, K., Meng, W., Gu, M., and Fang, X., 768-ary Laguerre–Gaussian-mode shift keying free-space optical communication based on convolutional neural networks, Opt. Express, 2021, vol. 29, no. 13, pp. 19807–19818.CrossRef Luan, H., Lin, D., Li, K., Meng, W., Gu, M., and Fang, X., 768-ary Laguerre–Gaussian-mode shift keying free-space optical communication based on convolutional neural networks, Opt. Express, 2021, vol. 29, no. 13, pp. 19807–19818.CrossRef
16.
Zurück zum Zitat Cao, M., Yin, Y., Zhou, J., Tang, J., Cao, L., Xia, Y., and Yin, J., Machine learning based accurate recognition of fractional optical vortex modes in atmospheric environment, Appl. Phys. Lett., 2021, vol. 119, no. 14, pp. 141103.CrossRef Cao, M., Yin, Y., Zhou, J., Tang, J., Cao, L., Xia, Y., and Yin, J., Machine learning based accurate recognition of fractional optical vortex modes in atmospheric environment, Appl. Phys. Lett., 2021, vol. 119, no. 14, pp. 141103.CrossRef
17.
Zurück zum Zitat Wang, P., Xiong, W., Huang, Z., He, Y., Liu, J., Ye, H., Xiao, J., Li, Y., Fan, D., and Chen, S., Diffractive Deep Neural Network for optical orbital angular momentum multiplexing and demultiplexing, IEEE J. Sel. Top. Quantum Electron., 2022, vol. 28, no. 4, pp. 7500111.CrossRef Wang, P., Xiong, W., Huang, Z., He, Y., Liu, J., Ye, H., Xiao, J., Li, Y., Fan, D., and Chen, S., Diffractive Deep Neural Network for optical orbital angular momentum multiplexing and demultiplexing, IEEE J. Sel. Top. Quantum Electron., 2022, vol. 28, no. 4, pp. 7500111.CrossRef
18.
Zurück zum Zitat Bukin, D.P. and Kozlova, E.S., Neural network for recognition noisy images of Laguerre–Gaussian modes, Proc. SPIE, 2022, vol. 12295, pp. 122950U. Bukin, D.P. and Kozlova, E.S., Neural network for recognition noisy images of Laguerre–Gaussian modes, Proc. SPIE, 2022, vol. 12295, pp. 122950U.
19.
Zurück zum Zitat Sharifi, S., Banadaki, Y., Siddiqui, E., Cuzzo, S., Bhusal, N., Cohen, L., Kalasky, A., Prajapati, N., Soto-Garcia, R., Brown, S., Novikova, I., Mikhailov, E., Veronis, G., and Dowling, J., Identifying Laguerre–Gaussian modes using Convolutional Neural Network, 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 2019, pp. 475–478. Sharifi, S., Banadaki, Y., Siddiqui, E., Cuzzo, S., Bhusal, N., Cohen, L., Kalasky, A., Prajapati, N., Soto-Garcia, R., Brown, S., Novikova, I., Mikhailov, E., Veronis, G., and Dowling, J., Identifying Laguerre–Gaussian modes using Convolutional Neural Network, 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 2019, pp. 475–478.
20.
Zurück zum Zitat Sharifi, S., Banadaki, Y.M., Veronis, G., and Dowling, J.P., Towards classification of experimental Laguerre–Gaussian modes using convolutional neural networks, Opt. Eng., 2020, vol. 59, no. 7, pp. 076113.CrossRef Sharifi, S., Banadaki, Y.M., Veronis, G., and Dowling, J.P., Towards classification of experimental Laguerre–Gaussian modes using convolutional neural networks, Opt. Eng., 2020, vol. 59, no. 7, pp. 076113.CrossRef
21.
Zurück zum Zitat Li, Z., Liu, F., Yang, W., Peng S., and Zhou, J., A survey of Convolutional Neural Networks: Analysis, applications, and prospects, IEEE Trans. Neural Networks Learn. Syst., 2022, vol. 33, no. 12, pp. 6999–7019.MathSciNetCrossRef Li, Z., Liu, F., Yang, W., Peng S., and Zhou, J., A survey of Convolutional Neural Networks: Analysis, applications, and prospects, IEEE Trans. Neural Networks Learn. Syst., 2022, vol. 33, no. 12, pp. 6999–7019.MathSciNetCrossRef
22.
Zurück zum Zitat Sulavko, A.E., An abstract model of an artificial immune network based on a classifiers committee for biometric pattern recognition by the example of keystroke dynamics, Comput. Opt., 2020, vol. 44, no. 5, pp. 830–842.CrossRef Sulavko, A.E., An abstract model of an artificial immune network based on a classifiers committee for biometric pattern recognition by the example of keystroke dynamics, Comput. Opt., 2020, vol. 44, no. 5, pp. 830–842.CrossRef
23.
Zurück zum Zitat Zhou, D.-X., Theory of deep convolutional neural networks: Downsampling, Neural Networks, 2020, vol. 124, pp. 319–327.CrossRefMATH Zhou, D.-X., Theory of deep convolutional neural networks: Downsampling, Neural Networks, 2020, vol. 124, pp. 319–327.CrossRefMATH
24.
Zurück zum Zitat Rodin, I.A., Khonina, S.N., Serafimovich, P.G., and Popov, S.B., Recognition of wavefront aberrations types corresponding to single Zernike functions from the pattern of the point spread function in the focal plane using neural networks, Comput. Opt., 2020, vol. 44, no. 6, pp. 923–930.CrossRef Rodin, I.A., Khonina, S.N., Serafimovich, P.G., and Popov, S.B., Recognition of wavefront aberrations types corresponding to single Zernike functions from the pattern of the point spread function in the focal plane using neural networks, Comput. Opt., 2020, vol. 44, no. 6, pp. 923–930.CrossRef
25.
Zurück zum Zitat Bragin, A.D. and Spitsyn, V.G., Motor imagery recognition in electroencephalograms using convolutional neural networks, Comput. Opt., 2020, vol. 44, no. 3, pp. 482–487.CrossRef Bragin, A.D. and Spitsyn, V.G., Motor imagery recognition in electroencephalograms using convolutional neural networks, Comput. Opt., 2020, vol. 44, no. 3, pp. 482–487.CrossRef
26.
Zurück zum Zitat Gorbachev, V.A., Krivorotov, I.A., Markelov, A.O., and Kotlyarova, E.V., Semantic segmentation of satellite images of airports using convolutional neural networks, Comput. Opt., 2020, vol. 44, no. 4, pp. 636–645.CrossRef Gorbachev, V.A., Krivorotov, I.A., Markelov, A.O., and Kotlyarova, E.V., Semantic segmentation of satellite images of airports using convolutional neural networks, Comput. Opt., 2020, vol. 44, no. 4, pp. 636–645.CrossRef
27.
Zurück zum Zitat Firsov, N.A., Podlipnov, V.V., Ivliev, N.A., Nikolaev, P.P., Mashkov, S.V., Ishkin, P.A., Skidanov, R.V., and Nikonorov, A.V., Neural network-aided classification of hyperspectral vegetation images with a training sample generated using an adaptive vegetation index, Comput. Opt., 2021, vol. 45, no. 6, pp. 887–896.CrossRef Firsov, N.A., Podlipnov, V.V., Ivliev, N.A., Nikolaev, P.P., Mashkov, S.V., Ishkin, P.A., Skidanov, R.V., and Nikonorov, A.V., Neural network-aided classification of hyperspectral vegetation images with a training sample generated using an adaptive vegetation index, Comput. Opt., 2021, vol. 45, no. 6, pp. 887–896.CrossRef
28.
Zurück zum Zitat Ganeeva, Y.K. and Myasnikov, E.V., Identifying persons from iris images using neural networks for image segmentation and feature extraction, Comput. Opt., 2022, vol. 46, no. 2, pp. 308–316.CrossRef Ganeeva, Y.K. and Myasnikov, E.V., Identifying persons from iris images using neural networks for image segmentation and feature extraction, Comput. Opt., 2022, vol. 46, no. 2, pp. 308–316.CrossRef
29.
Zurück zum Zitat Bohush, R.P. and Zakharava, I.Y., Person tracking algorithm based on convolutional neural network for indoor video surveillance, Comput. Opt., 2020, vol. 40, no. 1, pp. 109–116. Bohush, R.P. and Zakharava, I.Y., Person tracking algorithm based on convolutional neural network for indoor video surveillance, Comput. Opt., 2020, vol. 40, no. 1, pp. 109–116.
30.
Zurück zum Zitat Kalinina, M.O. and Nikolaev, P.L., Book spine recognition with the use of deep neural networks, Comput. Opt., 2020, vol. 44, no. 6, pp. 968–977.CrossRef Kalinina, M.O. and Nikolaev, P.L., Book spine recognition with the use of deep neural networks, Comput. Opt., 2020, vol. 44, no. 6, pp. 968–977.CrossRef
31.
Zurück zum Zitat Thanh, D.N.H., Hai, N.H., Hieu, L.M., Tiwari, P., and Prasath, V.B.S., Skin lesion segmentation method for dermoscopic images with convolutional neural networks and semantic segmentation, Comput. Opt., 2021, vol. 45, no. 1, pp. 122–129.CrossRef Thanh, D.N.H., Hai, N.H., Hieu, L.M., Tiwari, P., and Prasath, V.B.S., Skin lesion segmentation method for dermoscopic images with convolutional neural networks and semantic segmentation, Comput. Opt., 2021, vol. 45, no. 1, pp. 122–129.CrossRef
32.
Zurück zum Zitat Xia, T., Liu, D., Dong, A., Wang, G., Zhong, H., and Wang, Y., Properties of partially coherent elegant Laguerre–Gaussian beam in free space and oceanic turbulence, Optik, 2020, vol. 201, pp. 163514.CrossRef Xia, T., Liu, D., Dong, A., Wang, G., Zhong, H., and Wang, Y., Properties of partially coherent elegant Laguerre–Gaussian beam in free space and oceanic turbulence, Optik, 2020, vol. 201, pp. 163514.CrossRef
33.
Zurück zum Zitat Karpeev, S.V., Podlipnov, V.V., Ivliev, N.A., and Khonina, S.N., High-speed format 1000BASE-SX/LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT, Comput. Opt., 2020, vol. 44, no. 4, pp. 578–581.CrossRef Karpeev, S.V., Podlipnov, V.V., Ivliev, N.A., and Khonina, S.N., High-speed format 1000BASE-SX/LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT, Comput. Opt., 2020, vol. 44, no. 4, pp. 578–581.CrossRef
34.
Zurück zum Zitat Hricha, Z., Lazrek, M., Yaalou, M., and Belafhal, A., Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence, Opt. Quantum Electron., 2021, vol. 53, p. 383.CrossRef Hricha, Z., Lazrek, M., Yaalou, M., and Belafhal, A., Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence, Opt. Quantum Electron., 2021, vol. 53, p. 383.CrossRef
35.
Zurück zum Zitat Fu, X., Bai, Y., and Yang, Y., Measuring OAM by the hybrid scheme of interference and convolutional neural network, Opt. Eng., 2021, vol. 60, no. 6, pp. 7500111.CrossRef Fu, X., Bai, Y., and Yang, Y., Measuring OAM by the hybrid scheme of interference and convolutional neural network, Opt. Eng., 2021, vol. 60, no. 6, pp. 7500111.CrossRef
Metadaten
Titel
Investigation of the Training Data Set Influence on the Accuracy of the Optical Laguerre-Gaussian Modes Recognition
verfasst von
A. V. Bekhterev
Publikationsdatum
01.11.2023
Verlag
Pleiades Publishing
Erschienen in
Optical Memory and Neural Networks / Ausgabe Sonderheft 1/2023
Print ISSN: 1060-992X
Elektronische ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X2305003X

Weitere Artikel der Sonderheft 1/2023

Optical Memory and Neural Networks 1/2023 Zur Ausgabe

Premium Partner