Skip to main content

2022 | OriginalPaper | Buchkapitel

7. Ion Beam Figuring and Smoothing

verfasst von : Bernd Rauschenbach

Erschienen in: Low-Energy Ion Irradiation of Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The technologies, ion beam figuring (IBF) and ion beam-induced smoothing (IBS), are used to precisely remove imperfections or correct surface shape in a predetermined and controlled manner. The IBF method uses the computer-aided codes to realize the desired surface topography, where a spatially and temporally stable ion beam is passed vertically over the surface at a fixed distance in a high-vacuum environment. The main input variables of this approach, the ion beam removal function, the surface error function and the dwell time procedure, are presented. The various algorithms (Fourier transform algorithm, iterative dwell algorithm, matrix based algorithm, Bayesian algorithm) for determining the dwell time of the ion beam over each object point to be machined and the effect of temperature during the figuring procedure are discussed. The application of IBF technology for the correction of shape errors on surfaces to achieve depth accuracies in the nanometer and sub-nanometer range over the entire spectrum of the spatial surface wavelength is demonstrated with selected examples. Ion beam-induced smoothing (IBS) focuses on feature processing (spatial wavelength < a few microns and height amplitudes on the order of nanometers) with the aim of producing ultra-smooth surfaces. In addition to direct smoothing by low-energy ions, the technologies of smoothing with a planarization layer and smoothing by means of ions incident at a very oblique angle have also become established. Atomistic surface relaxation processes such as ion beam enhanced viscous flow, thermally activated surface diffusion, effective ion-induced diffusion, and ballistic mass redistribution can contribute to the smoothing process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.J. Nobes, J.S. Colligon, G. Carter, The equilibrium topography of sputtered amorphous solids. J. Mater Sci. 4, 730–733 (1969)CrossRef M.J. Nobes, J.S. Colligon, G. Carter, The equilibrium topography of sputtered amorphous solids. J. Mater Sci. 4, 730–733 (1969)CrossRef
2.
Zurück zum Zitat G. Carter, J.S. Colligon, M.J. Nobes, The equilibrium topography of sputtered amorphous solids II. J. Mater Sci. 6, 115–117 (1971)CrossRef G. Carter, J.S. Colligon, M.J. Nobes, The equilibrium topography of sputtered amorphous solids II. J. Mater Sci. 6, 115–117 (1971)CrossRef
3.
Zurück zum Zitat G. Carter, The physics and applications of ion beam erosion. J. Phys. D: Appl. Phys. 34, R1–R22 (2001)CrossRef G. Carter, The physics and applications of ion beam erosion. J. Phys. D: Appl. Phys. 34, R1–R22 (2001)CrossRef
4.
Zurück zum Zitat F.C. Frank, On the kinematic theory of crystal growth and dissolution processes II. Z. Phys. Chem. 77, 84–92 (1972)CrossRef F.C. Frank, On the kinematic theory of crystal growth and dissolution processes II. Z. Phys. Chem. 77, 84–92 (1972)CrossRef
5.
Zurück zum Zitat G. Carter, Theory of surface erosion and growth, in Erosion and Growth of Solids Stimulated by Atom and Ion Beams, ed. by G. Kiriakidis, G. Carter, J.L. Whitton, (Proceed. NATO ASI Series E 112, Martinus Nijhoff’, Dordrecht, 1986) pp. 70–97 G. Carter, Theory of surface erosion and growth, in Erosion and Growth of Solids Stimulated by Atom and Ion Beams, ed. by G. Kiriakidis, G. Carter, J.L. Whitton, (Proceed. NATO ASI Series E 112, Martinus Nijhoff’, Dordrecht, 1986) pp. 70–97
6.
Zurück zum Zitat A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, F. Bigl, Precision optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring. Proc. SPIE 4451, 242–248 (2001)CrossRef A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, F. Bigl, Precision optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring. Proc. SPIE 4451, 242–248 (2001)CrossRef
7.
Zurück zum Zitat T. Hänsel, P. Seidel, A. Nickel, A. Schindler, B. Rauschenbach, Deterministic ion beam figuring of surface errors in sub-millimeter spatial wavelength range, in Proceeding of 6th EUSPAN International Conferences Baden/Wien (2006) T. Hänsel, P. Seidel, A. Nickel, A. Schindler, B. Rauschenbach, Deterministic ion beam figuring of surface errors in sub-millimeter spatial wavelength range, in Proceeding of 6th EUSPAN International Conferences Baden/Wien (2006)
8.
Zurück zum Zitat A. Schindler, T. Hänsel, A. Nickel, F. Frost, H.-J. Thomas, H. Neumann, G. Seidenkranz, R. Schwabe, S. Gürtler, S. Görsch, A. Bogatz, B. Rauschenbach, Ion beam figuring (IBF) solutions for high performance optics surface finishing from meter to millimeter spatial wavelength range, in Proceeding of 3rd International Conferences on Leading Edge Manufacturing in 21st century, Nagoya (2005) A. Schindler, T. Hänsel, A. Nickel, F. Frost, H.-J. Thomas, H. Neumann, G. Seidenkranz, R. Schwabe, S. Gürtler, S. Görsch, A. Bogatz, B. Rauschenbach, Ion beam figuring (IBF) solutions for high performance optics surface finishing from meter to millimeter spatial wavelength range, in Proceeding of 3rd International Conferences on Leading Edge Manufacturing in 21st century, Nagoya (2005)
9.
Zurück zum Zitat N. Savvides, A. Knittel, Ion beam figuring of optics, CSIRO report CIP2152 (2004). N. Savvides, A. Knittel, Ion beam figuring of optics, CSIRO report CIP2152 (2004).
10.
Zurück zum Zitat X. Xuhui, L. Shengyi, Ion beam figuring technology, in Handbook of Manufacturing Engineering and Technology, ed. by A.Y.C. Nee, (Springer, London 2015), pp. 1343–1390 X. Xuhui, L. Shengyi, Ion beam figuring technology, in Handbook of Manufacturing Engineering and Technology, ed. by A.Y.C. Nee, (Springer, London 2015), pp. 1343–1390
11.
Zurück zum Zitat A. Schindler, T. Hänsel, D. Flamm, G. Boehm, F. Frost, R. Fechner, B. Rauschenbach, Ion beam and plasma jet etching for optical component fabrication. Proc SPIE 4440, 217–227 (2001)CrossRef A. Schindler, T. Hänsel, D. Flamm, G. Boehm, F. Frost, R. Fechner, B. Rauschenbach, Ion beam and plasma jet etching for optical component fabrication. Proc SPIE 4440, 217–227 (2001)CrossRef
12.
Zurück zum Zitat R. Castaing, P. Laborie, Aspects partieuliers de l`etude des métaux en coupes mines. Compt. Rend. 238, 1885–1887 (1954) R. Castaing, P. Laborie, Aspects partieuliers de l`etude des métaux en coupes mines. Compt. Rend. 238, 1885–1887 (1954)
13.
Zurück zum Zitat A.B. Meinel, S. Bashkin, D.A. Loomis, Controlled figuring of optical surfaces by energetic ionic beams. Appl. Optics 4, 1647–1647 (1965)CrossRef A.B. Meinel, S. Bashkin, D.A. Loomis, Controlled figuring of optical surfaces by energetic ionic beams. Appl. Optics 4, 1647–1647 (1965)CrossRef
14.
Zurück zum Zitat J.B. Schroeder, S. Bashkin, J.F. Nester, Ionic polishing of optical surfaces. Appl. Optics 5, 1031–1034 (1966)CrossRef J.B. Schroeder, S. Bashkin, J.F. Nester, Ionic polishing of optical surfaces. Appl. Optics 5, 1031–1034 (1966)CrossRef
15.
Zurück zum Zitat P.H. Schmidt, E.G. Spencer, E.M. Walters, Ion milling of magnetic oxide platelets for the removal of surface and near-surface imperfections and defects. J. Appl. Phys. 41, 4740–4742 (1970)CrossRef P.H. Schmidt, E.G. Spencer, E.M. Walters, Ion milling of magnetic oxide platelets for the removal of surface and near-surface imperfections and defects. J. Appl. Phys. 41, 4740–4742 (1970)CrossRef
16.
Zurück zum Zitat B. Schroeder, H.D. Dieselman, J.W. Douglass, Technical feasibility of figuring optical surfaces by ion polishing. Appl. Optics 10, 295–299 (1970)CrossRef B. Schroeder, H.D. Dieselman, J.W. Douglass, Technical feasibility of figuring optical surfaces by ion polishing. Appl. Optics 10, 295–299 (1970)CrossRef
17.
Zurück zum Zitat R.A. House II., J.R. Bettis, A.H. Guenther, Appl. Optics 16, 1486–1488 (1977)CrossRef R.A. House II., J.R. Bettis, A.H. Guenther, Appl. Optics 16, 1486–1488 (1977)CrossRef
18.
Zurück zum Zitat D.T. Hawkins, Ion milling (ion beam etching), 1954–1975: a bibliography. J. Vac. Sci. Technol. 12, 1389–1397 (1975)CrossRef D.T. Hawkins, Ion milling (ion beam etching), 1954–1975: a bibliography. J. Vac. Sci. Technol. 12, 1389–1397 (1975)CrossRef
19.
Zurück zum Zitat H.R. Kaufman, P.D. Reader, G.C. Isaacson, Ion sources for ion machining applications. AIAA J. 15, 843–847 (1977)CrossRef H.R. Kaufman, P.D. Reader, G.C. Isaacson, Ion sources for ion machining applications. AIAA J. 15, 843–847 (1977)CrossRef
20.
Zurück zum Zitat S.R. Wilson, J.R. McNeil, Surface figuring using neutral ion beams. Proc. SPIE 966, 74–81 (1989)CrossRef S.R. Wilson, J.R. McNeil, Surface figuring using neutral ion beams. Proc. SPIE 966, 74–81 (1989)CrossRef
21.
Zurück zum Zitat L.N. Allen, H.W. Romig, Demonstration of an ion figuring process. Proc. SPIE 1333, 22–33 (1990)CrossRef L.N. Allen, H.W. Romig, Demonstration of an ion figuring process. Proc. SPIE 1333, 22–33 (1990)CrossRef
22.
Zurück zum Zitat R.L. Seliger, W.P. Fleming, Focused ion beams in microfabrication. J. Appl. Phys. 45, 1416–1422 (1974)CrossRef R.L. Seliger, W.P. Fleming, Focused ion beams in microfabrication. J. Appl. Phys. 45, 1416–1422 (1974)CrossRef
23.
Zurück zum Zitat P. Sigmund, Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184, 383–416 (1969) and Y. Yamamura, An empirical formula for angular dependence of sputtering yields. Rad. Effects 80, 57–72 (1984) P. Sigmund, Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184, 383416 (1969) and Y. Yamamura, An empirical formula for angular dependence of sputtering yields. Rad. Effects 80, 57–72 (1984)
24.
Zurück zum Zitat S. Wilson, J. McNeil, Neutral ion beam figuring of large optical surfaces. Curr. Dev. Optical Eng. II(818), 320–325 (1987) S. Wilson, J. McNeil, Neutral ion beam figuring of large optical surfaces. Curr. Dev. Optical Eng. II(818), 320–325 (1987)
25.
Zurück zum Zitat T.W. Drueding, T.G. Bifano, S.C. Fawcett, Contouring algorithm for ion figuring. Precis. Eng. 17, 10–21 (1995)CrossRef T.W. Drueding, T.G. Bifano, S.C. Fawcett, Contouring algorithm for ion figuring. Precis. Eng. 17, 10–21 (1995)CrossRef
26.
Zurück zum Zitat T. Wang, L. Huang, H. Kang, H. Choi, D.W. Kim, K. Tayabaly, M. Idir, Transform-based dwell time algorithm for ultra-precision ion beam figuring of synchrotron mirrors. Sci. Rep 10, 813 (2020) T. Wang, L. Huang, H. Kang, H. Choi, D.W. Kim, K. Tayabaly, M. Idir, Transform-based dwell time algorithm for ultra-precision ion beam figuring of synchrotron mirrors. Sci. Rep 10, 813 (2020)
27.
Zurück zum Zitat T. Wang, L. Huang, M. Vescovi, D. Kuhne, K. Tayabaly, N. Bouet, M. Idir, Study on an effective one-dimensional ion-beam figuring method. Opt. Express 27, 15368–15381 (2019)CrossRef T. Wang, L. Huang, M. Vescovi, D. Kuhne, K. Tayabaly, N. Bouet, M. Idir, Study on an effective one-dimensional ion-beam figuring method. Opt. Express 27, 15368–15381 (2019)CrossRef
29.
Zurück zum Zitat S. Wilson, D. Reicher, C. Kranenberg, J. McNeil, P. White, P. Martin, D. McCready, Ion beam milling of fused silica for window fabrication, in Laser-Induced Damage in Optical Materials, ed. by H. Bennett, L. Chase, A. Guenther, B. Newnam, M. Soileau, (West Conshohocken), ASTM International 1441, 82–86 (1991) S. Wilson, D. Reicher, C. Kranenberg, J. McNeil, P. White, P. Martin, D. McCready, Ion beam milling of fused silica for window fabrication, in Laser-Induced Damage in Optical Materials, ed. by H. Bennett, L. Chase, A. Guenther, B. Newnam, M. Soileau, (West Conshohocken), ASTM International 1441, 82–86 (1991)
30.
Zurück zum Zitat P.H. van Cittert, Zum Einfluss der Spaltbreite auf die Intensitätsverteilung in Spektrallinien II. Z. Phys. 69, 298–308 (1931)CrossRef P.H. van Cittert, Zum Einfluss der Spaltbreite auf die Intensitätsverteilung in Spektrallinien II. Z. Phys. 69, 298–308 (1931)CrossRef
31.
Zurück zum Zitat W.H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. 62, 55–59 (1972) and L.B. Lucy, An iterative technique for the rectification of observed distributions. Astronom. J. 79, 745–754 (1974) W.H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. 62, 5559 (1972) and L.B. Lucy, An iterative technique for the rectification of observed distributions. Astronom. J. 79, 745–754 (1974)
32.
Zurück zum Zitat R. Gold, An iterative unfolding method for response matrices, (Argonne National Laboratory Report ANL-6984, 1964) R. Gold, An iterative unfolding method for response matrices, (Argonne National Laboratory Report ANL-6984, 1964)
33.
Zurück zum Zitat Ch. Xu, I, Aissaoui, S. Jacquey, Algebraic analysis of the Van Cittert iterative method of deconvolution with a general relaxation factor. J. Opt. Soc. Am. A 11 (1994) 2804-2808 Ch. Xu, I, Aissaoui, S. Jacquey, Algebraic analysis of the Van Cittert iterative method of deconvolution with a general relaxation factor. J. Opt. Soc. Am. A 11 (1994) 2804-2808
34.
Zurück zum Zitat J.F. Wu, Z.W. Lu, H.X. Zhang, T.S. Wang, Dwell time algorithm in ion beam figuring. Appl. Opt. 48, 3930–3937 (2009)CrossRef J.F. Wu, Z.W. Lu, H.X. Zhang, T.S. Wang, Dwell time algorithm in ion beam figuring. Appl. Opt. 48, 3930–3937 (2009)CrossRef
35.
Zurück zum Zitat T. Hänsel, A. Nickel, A. Schindler, Ion beam figuring of strongly curved surfaces with a (x, y, z) linear three-axes system, OAS Tech. Digest (Opt. Soc. Am., 2008) paper JWD6 T. Hänsel, A. Nickel, A. Schindler, Ion beam figuring of strongly curved surfaces with a (x, y, z) linear three-axes system, OAS Tech. Digest (Opt. Soc. Am., 2008) paper JWD6
36.
Zurück zum Zitat Y.S. Ghim, S.-J. Shin, H.-G. Rhee, H.-S. Yang, Y.-M. Lee, Ultra-precision surface polishing using ion beam figuring. Proc. SPIE 8416 (2012) Y.S. Ghim, S.-J. Shin, H.-G. Rhee, H.-S. Yang, Y.-M. Lee, Ultra-precision surface polishing using ion beam figuring. Proc. SPIE 8416 (2012)
37.
Zurück zum Zitat A. Haberl, R. Rascher, Yet one more dwell time algorithm. Proc. SPIE 103026 (2017) A. Haberl, R. Rascher, Yet one more dwell time algorithm. Proc. SPIE 103026 (2017)
38.
Zurück zum Zitat C.L. Carnal, C.M. Egert, K.W. Hylton, Advanced matrix-based algorithm for ion-beam milling of optical components. Proc. SPIE 1752, 54–63 (1992)CrossRef C.L. Carnal, C.M. Egert, K.W. Hylton, Advanced matrix-based algorithm for ion-beam milling of optical components. Proc. SPIE 1752, 54–63 (1992)CrossRef
39.
Zurück zum Zitat L. Zhou, Y. Dai, X. Xie, C. Jiao, S. Li, Model and method to determine dwell time in ion beam figuring. Nanotechnol. Precis. Eng. 5, 107–112 (2007) L. Zhou, Y. Dai, X. Xie, C. Jiao, S. Li, Model and method to determine dwell time in ion beam figuring. Nanotechnol. Precis. Eng. 5, 107–112 (2007)
40.
Zurück zum Zitat C.C. Paige, M.A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math Softw 8, 43–71 (1982)CrossRef C.C. Paige, M.A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math Softw 8, 43–71 (1982)CrossRef
41.
Zurück zum Zitat C. Jiao, S. Li, X. Xie, Algorithm for ion beam figuring of low-gradient mirrors. Appl. Opt. 48, 4090–4096 (2009)CrossRef C. Jiao, S. Li, X. Xie, Algorithm for ion beam figuring of low-gradient mirrors. Appl. Opt. 48, 4090–4096 (2009)CrossRef
42.
Zurück zum Zitat J.M. Bernardo, A.F.M. Smith, Bayesian theory (Wiley, Chichester, 2000) J.M. Bernardo, A.F.M. Smith, Bayesian theory (Wiley, Chichester, 2000)
43.
Zurück zum Zitat M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, G. Pareschi, G. Sironi, Ion beam figuring technique used as final step in the manufacturing of the optics for the E-ELT. Mem. Soc. Astro. 86, 412–415 (2015) M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, G. Pareschi, G. Sironi, Ion beam figuring technique used as final step in the manufacturing of the optics for the E-ELT. Mem. Soc. Astro. 86, 412–415 (2015)
44.
Zurück zum Zitat P. Gailly, J.P. Collette, L. Renson, J.-P. Tock, Ion beam figuring of small BK7 and zerodur optics: thermal effects. Proc. SPIE 3739 (1999) P. Gailly, J.P. Collette, L. Renson, J.-P. Tock, Ion beam figuring of small BK7 and zerodur optics: thermal effects. Proc. SPIE 3739 (1999)
45.
Zurück zum Zitat X. Xie, Y. Hao, L. Zhou, Y. Dai, S. Li, High thermal expansion optical component machined by ion beam figuring. Opt. Eng. 51, 013401 (2012) X. Xie, Y. Hao, L. Zhou, Y. Dai, S. Li, High thermal expansion optical component machined by ion beam figuring. Opt. Eng. 51, 013401 (2012)
46.
Zurück zum Zitat F. Li, X. Xie, G. Tie, H. Hu, L. Zhou, Research on temperature field of KDP crystal under ion beam cleaning. Appl. Opt. 56, 4888–5489 (2016)CrossRef F. Li, X. Xie, G. Tie, H. Hu, L. Zhou, Research on temperature field of KDP crystal under ion beam cleaning. Appl. Opt. 56, 4888–5489 (2016)CrossRef
47.
Zurück zum Zitat P.D. Parry, Target heating during ion implantation, J. Vac. Sci. Technol. 13, 622–629 (1976) and Localized substrate heating during ion implantation, 15, 111–115 (1978) P.D. Parry, Target heating during ion implantation, J. Vac. Sci. Technol. 13, 622–629 (1976) and Localized substrate heating during ion implantation, 15, 111–115 (1978)
48.
Zurück zum Zitat A. Schindler, T. Hänsel, F. Frost, G. Böhm, W. Frank, A. Nickel, T. Arnold, R. Schwabe, S. Gürtler, S. Görsch, B. Rauschenbach, Modern methods of highly precise figuring and polishing, in Proceed of 3rd DGG Symposium, Glass Science and Technology (vol. 78 C, 2005), pp. 111–114 A. Schindler, T. Hänsel, F. Frost, G. Böhm, W. Frank, A. Nickel, T. Arnold, R. Schwabe, S. Gürtler, S. Görsch, B. Rauschenbach, Modern methods of highly precise figuring and polishing, in Proceed of 3rd DGG Symposium, Glass Science and Technology (vol. 78 C, 2005), pp. 111–114
49.
Zurück zum Zitat M. Weiser, Quantitative investigations of the removal of glass material by low energy ion beams with the use of optical interferometry. Nucl. Instr. Meth. Phys. Res. B 80(81), 1174–1177 (1993)CrossRef M. Weiser, Quantitative investigations of the removal of glass material by low energy ion beams with the use of optical interferometry. Nucl. Instr. Meth. Phys. Res. B 80(81), 1174–1177 (1993)CrossRef
50.
Zurück zum Zitat T. Hänsel, F. Frost, A. Nickel, A. Schindler, Ultra-precision surface finishing by ion beam techniques. Vak. Forsch. Praxis 19, 24–30 (2007)CrossRef T. Hänsel, F. Frost, A. Nickel, A. Schindler, Ultra-precision surface finishing by ion beam techniques. Vak. Forsch. Praxis 19, 24–30 (2007)CrossRef
51.
Zurück zum Zitat T. Hänsel, A. Nickel, A. Schindler, H.-J. Thomas, Ion beam figuring surface finishing of x-ray and synchrotron beam line optics using stitching interferometry for the surface topography measurement, in Conference on Optical Society America (OSA, Rochester 2004), Paper OMD 5 T. Hänsel, A. Nickel, A. Schindler, H.-J. Thomas, Ion beam figuring surface finishing of x-ray and synchrotron beam line optics using stitching interferometry for the surface topography measurement, in Conference on Optical Society America (OSA, Rochester 2004), Paper OMD 5
52.
Zurück zum Zitat A. Schindler, T. Hänsel, F. Frost, A. Nickel, R. Fechner, B. Rauschenbach, Recent achievements on ion techniques for optics fabrication, in Conference on Optical Society America (OSA, Rochester 2004), Paper OMC 3 A. Schindler, T. Hänsel, F. Frost, A. Nickel, R. Fechner, B. Rauschenbach, Recent achievements on ion techniques for optics fabrication, in Conference on Optical Society America (OSA, Rochester 2004), Paper OMC 3
53.
Zurück zum Zitat L.N. Allen, J.J. Hannon, R.W. Wambach, Final surface error correction of an off-axis aspheric petal by ion figuring. Proc. SPIE 1543 (1992) L.N. Allen, J.J. Hannon, R.W. Wambach, Final surface error correction of an off-axis aspheric petal by ion figuring. Proc. SPIE 1543 (1992)
54.
Zurück zum Zitat A. Schindler, F. Frost, A. Nickel, T. Hänsel, B. Rauschenbach, Ion beam assisted smoothing of surfaces, in Proceeding of 1st International Conference on Micro- and Nano-Technology Vienna (2005), pp. 367–374 and A. Schindler, Tutorial on recent advances in ion beam and plasma jet processing, (Optical Fabrication and Testing (OAS), Paper OW4D.1, 2012) pp. 43–45 A. Schindler, F. Frost, A. Nickel, T. Hänsel, B. Rauschenbach, Ion beam assisted smoothing of surfaces, in Proceeding of 1st International Conference on Micro- and Nano-Technology Vienna (2005), pp. 367–374 and A. Schindler, Tutorial on recent advances in ion beam and plasma jet processing, (Optical Fabrication and Testing (OAS), Paper OW4D.1, 2012)   pp. 43–45
55.
Zurück zum Zitat R.E. Wilson, Ionic polishing of fused silica and glass. Opt. Technol. 2, 19–26 (1970)CrossRef R.E. Wilson, Ionic polishing of fused silica and glass. Opt. Technol. 2, 19–26 (1970)CrossRef
56.
Zurück zum Zitat M. Tarasevich, Ion beam erosion of rough glass surfaces. Appl. Opt. 9, 173–176 (1970 M. Tarasevich, Ion beam erosion of rough glass surfaces. Appl. Opt. 9, 173–176 (1970
57.
Zurück zum Zitat A.F. Perveyev, V.V. IL’in, A.V. Mikhaylov, Ion polishing of Glass. Sov. J. Opt. Technol. 39, 622–624 (1972) A.F. Perveyev, V.V. IL’in, A.V. Mikhaylov, Ion polishing of Glass. Sov. J. Opt. Technol. 39, 622–624 (1972)
58.
Zurück zum Zitat F. Frost, B. Ziberi, A. Schindler, B. Rauschenbach, Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 91, 551–559 (2008)CrossRef F. Frost, B. Ziberi, A. Schindler, B. Rauschenbach, Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 91, 551–559 (2008)CrossRef
59.
Zurück zum Zitat D.J. Barber, F.C. Frank, M. Moss, J.-W. Steeds, I.S.T. Tsong, Prediction of ion bombarded surface topographies using Frank’s kinematic theory of crystal dissolution. J. Mater Sci. 8, 1030–1040 (1973)CrossRef D.J. Barber, F.C. Frank, M. Moss, J.-W. Steeds, I.S.T. Tsong, Prediction of ion bombarded surface topographies using Frank’s kinematic theory of crystal dissolution. J. Mater Sci. 8, 1030–1040 (1973)CrossRef
60.
Zurück zum Zitat R. Smith, M.A. Tagg, J.M. Walls, Deterministic models of ion erosion, reflection and redeposition. Vacuum 34, 175–180 (1984)CrossRef R. Smith, M.A. Tagg, J.M. Walls, Deterministic models of ion erosion, reflection and redeposition. Vacuum 34, 175–180 (1984)CrossRef
61.
Zurück zum Zitat G. Carter, J.S. Colligon, M.J. Nobes, Analytical modelling of sputter induced surface morphology. Rad. Eff. 31, 65–87 (1977)CrossRef G. Carter, J.S. Colligon, M.J. Nobes, Analytical modelling of sputter induced surface morphology. Rad. Eff. 31, 65–87 (1977)CrossRef
62.
Zurück zum Zitat R.M. Bradley, J.M.E. Harper, Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A 6, 2390–2396 (1988)CrossRef R.M. Bradley, J.M.E. Harper, Theory of ripple topography induced by ion bombardment.  J. Vac. Sci. Technol. A 6, 2390–2396 (1988)CrossRef
63.
Zurück zum Zitat G. Carter, M.J. Nobes, I.V. Katardjiev, The production of repetitive surface features by oblique incidence ion bombardment. Phil. Mag. B 68, 231–236 (1993)CrossRef G. Carter, M.J. Nobes, I.V. Katardjiev, The production of repetitive surface features by oblique incidence ion bombardment. Phil. Mag. B 68, 231–236 (1993)CrossRef
64.
Zurück zum Zitat E. Chason, T.M. Mayer, B.K. Kellerman, D.T. McIlroy, A.J. Howard, Roughening instability and evolution of the Ge(001) surface during lon sputtering. Phys. Rev. Lett. 72, 3040–3043 (1994)CrossRef E. Chason, T.M. Mayer, B.K. Kellerman, D.T. McIlroy, A.J. Howard, Roughening instability and evolution of the Ge(001) surface during lon sputtering. Phys. Rev. Lett. 72, 3040–3043 (1994)CrossRef
65.
Zurück zum Zitat R. Cuerno, A.-L. Barabási, Dynamic scaling of ion–sputtered surfaces. Phys. Rev. 74, 4746–4749 (1995) R. Cuerno, A.-L. Barabási, Dynamic scaling of ion–sputtered surfaces. Phys. Rev. 74, 4746–4749 (1995)
66.
Zurück zum Zitat R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion-sputtering: dynamical evolution from ripple morphology to rough morphology. Phys. Rev. Lett. 75, 4464–4467 (1995)CrossRef R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion-sputtering: dynamical evolution from ripple morphology to rough morphology. Phys. Rev. Lett. 75, 4464–4467 (1995)CrossRef
67.
Zurück zum Zitat C. Herring, Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301–303 (1950)CrossRef C. Herring, Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301–303 (1950)CrossRef
68.
Zurück zum Zitat W.M. Tong, R.S. Williams, Kinetics of surface growth: Phenomenology, scaling, and mechanisms of smoothing and roughening. Ann. Rev. Phys. Chem. 45, 401–438 (1994)CrossRef W.M. Tong, R.S. Williams, Kinetics of surface growth: Phenomenology, scaling, and mechanisms of smoothing and roughening. Ann. Rev. Phys. Chem. 45, 401–438 (1994)CrossRef
69.
Zurück zum Zitat D.G. Stearns, Stochastic model for thin film growth and erosion. Appl. Phys. Lett. 62, 1745–1747 (1993)CrossRef D.G. Stearns, Stochastic model for thin film growth and erosion. Appl. Phys. Lett. 62, 1745–1747 (1993)CrossRef
70.
Zurück zum Zitat W.W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28, 333–339 (1957). W.W. Mullins, Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959) W.W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28, 333–339 (1957). W.W. Mullins, Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959)
71.
Zurück zum Zitat A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)CrossRef A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)CrossRef
72.
Zurück zum Zitat S.E. Orchard, On surface levelling in viscous liquids and gels. Appl. Sci. Res., Section A. 11, 451–464 (1963) S.E. Orchard, On surface levelling in viscous liquids and gels. Appl. Sci. Res., Section A. 11, 451–464 (1963)
73.
Zurück zum Zitat M.A. Makeev, A.-L. Barabási, Ion-induced effective surface diffusion in ion sputtering. Appl. Phys. Lett. 71, 2800–2802 (1997)CrossRef M.A. Makeev, A.-L. Barabási, Ion-induced effective surface diffusion in ion sputtering. Appl. Phys. Lett. 71, 2800–2802 (1997)CrossRef
74.
Zurück zum Zitat G. Carter, V. Vishnyakov, Roughening and ripple instabilities on ion-bombarded Si. Phys. Rev. B 54, 17647–17653 (1996)CrossRef G. Carter, V. Vishnyakov, Roughening and ripple instabilities on ion-bombarded Si. Phys. Rev. B 54, 17647–17653 (1996)CrossRef
75.
Zurück zum Zitat W. Liao, Y. Dai, X. Xie, L. Zhou, Microscopic morphology evolution during ion beam smoothing of Zerodur surfaces. Opt. Express 22, 377–386 (2014)CrossRef W. Liao, Y. Dai, X. Xie, L. Zhou, Microscopic morphology evolution during ion beam smoothing of Zerodur surfaces. Opt. Express 22, 377–386 (2014)CrossRef
76.
Zurück zum Zitat W. Liao, Y. Dai, X. Xie, L. Zhou, Deterministic ion beam material adding technology for high-precision optical surfaces. Appl. Optics 52, 1302–1309 (2013)CrossRef W. Liao, Y. Dai, X. Xie, L. Zhou, Deterministic ion beam material adding technology for high-precision optical surfaces. Appl. Optics 52, 1302–1309 (2013)CrossRef
77.
Zurück zum Zitat S. Vauth, S.G. Mayr, Relevance of surface viscous flow, surface diffusion, and ballistic effects in keV ion smoothing of amorphous surfaces. Phys. Rev. B 75, 224107 (2007) S. Vauth, S.G. Mayr, Relevance of surface viscous flow, surface diffusion, and ballistic effects in keV ion smoothing of amorphous surfaces. Phys. Rev. B 75, 224107 (2007)
78.
Zurück zum Zitat F. Frost, R. Fechner, B. Ziberi, J. Völlner, D. Flamm, A Schindler, Large area smoothing of surfaces by ion bombardment: fundamentals and applications. J. Phys.: Condens. Matter. 21, 224026 (2009) F. Frost, R. Fechner, B. Ziberi, J. Völlner, D. Flamm, A Schindler, Large area smoothing of surfaces by ion bombardment: fundamentals and applications. J. Phys.: Condens. Matter. 21, 224026 (2009)
79.
Zurück zum Zitat E. Ziegler, L. Peverini, N. Vaxelaire, A. Cordon-Rodriguez, A. Rommeveaux, I.V. Kozhevnikov, J. Susini, Evolution of surface roughness in silicon X-ray mirrors exposed to a low-energy ion beam. Nucl. Instr. Meth. in Phys. Res. A 616, 188–192 (2010)CrossRef E. Ziegler, L. Peverini, N. Vaxelaire, A. Cordon-Rodriguez, A. Rommeveaux, I.V. Kozhevnikov, J. Susini, Evolution of surface roughness in silicon X-ray mirrors exposed to a low-energy ion beam. Nucl. Instr. Meth. in Phys. Res. A 616, 188–192 (2010)CrossRef
80.
Zurück zum Zitat A.J.R. van den Boogaard, E. Louis, E. Zoethout, S. Müllender, F. Bijkerk, Surface morphology of Kr+-polished amorphous Si layers. J. Vac. Sci Technol. A 28, 552–558 (2010)CrossRef A.J.R. van den Boogaard, E. Louis, E. Zoethout, S. Müllender, F. Bijkerk, Surface morphology of Kr+-polished amorphous Si layers. J. Vac. Sci Technol. A 28, 552–558 (2010)CrossRef
81.
Zurück zum Zitat K. Morijiri, H. Endo, K. Morikaawa, S.A. Pahlovy, I. Miyamoto, 0.5 keV Xe+ ion beam nano smoothing of ULE substrate after processing with 3.0–10.0 keV Xe+ ion beam, Microelectr. Eng. 88, 2694–2696 (2011) K. Morijiri, H. Endo, K. Morikaawa, S.A. Pahlovy, I. Miyamoto, 0.5 keV Xe+ ion beam nano smoothing of ULE substrate after processing with 3.0–10.0 keV Xe+ ion beam, Microelectr. Eng. 88, 2694–2696 (2011)
82.
Zurück zum Zitat H. Endo, T. Inaba, S.A. Pahlovy, I. Miyamoto, Low energy Xe+ ion beam machining of ULE substrates for EUVL projection optics—evaluation of high-spatial frequency roughness. Microelectr. Engng. 87, 982–984 (2010)CrossRef H. Endo, T. Inaba, S.A. Pahlovy, I. Miyamoto, Low energy Xe+ ion beam machining of ULE substrates for EUVL projection optics—evaluation of high-spatial frequency roughness. Microelectr. Engng. 87, 982–984 (2010)CrossRef
83.
Zurück zum Zitat M. Xu, Y. Dai, L. Zhou, X. Peng, S. Chen, W. Liao, Evolution mechanism of surface roughness during ion beam sputtering of fused silica. Appl. Optics 57, 5566–5573 (2018) M. Xu, Y. Dai, L. Zhou, X. Peng, S. Chen, W. Liao, Evolution mechanism of surface roughness during ion beam sputtering of fused silica. Appl. Optics 57, 5566–5573 (2018)
84.
Zurück zum Zitat N.I. Chkhalo, S.A. Churin, M.S. Mikhaylenko, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.V. Zorina, Ion-beam polishing of fused silica substrates for imaging soft X-ray and extreme ultraviolet optics. Appl. Optics 55, 1249–1256 (2016)CrossRef N.I. Chkhalo, S.A. Churin, M.S. Mikhaylenko, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.V. Zorina, Ion-beam polishing of fused silica substrates for imaging soft X-ray and extreme ultraviolet optics. Appl. Optics 55, 1249–1256 (2016)CrossRef
85.
Zurück zum Zitat N.I. Chkhalo, S.A. Churin, A.E. Pestov, N.N. Salashchenko, Yu.A. Vainer, M.V. Zorina, Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics. Opt. Express 22, 20094–20106 (2014)CrossRef N.I. Chkhalo, S.A. Churin, A.E. Pestov, N.N. Salashchenko, Yu.A. Vainer, M.V. Zorina, Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics. Opt. Express 22, 20094–20106 (2014)CrossRef
86.
Zurück zum Zitat P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H.-J. Pohl, H. Riemann, S. Valkiers, The Avogadro constant determination via enriched silicon-28. Meas. Sci. Technol. 20, 092002 (2009) P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H.-J. Pohl, H. Riemann, S. Valkiers, The Avogadro constant determination via enriched silicon-28. Meas. Sci. Technol. 20, 092002 (2009)
87.
Zurück zum Zitat T. Arnold, F. Pietag, Ion beam figuring machine for ultra-precision silicon spheres correction. Prec. Eng. 41, 119–125 (2015)CrossRef T. Arnold, F. Pietag, Ion beam figuring machine for ultra-precision silicon spheres correction. Prec. Eng. 41, 119–125 (2015)CrossRef
88.
Zurück zum Zitat T. Hino, T. Taguchi, Y. Yamauchi, Y. Hirohata, M. Nishikawa, Surface flatness of polycrystalline copper after argon ion etching followed by annealing. J. Vac. Sci. Technol. B 22, 2632–2634 (2004) T. Hino, T. Taguchi, Y. Yamauchi, Y. Hirohata, M. Nishikawa, Surface flatness of polycrystalline copper after argon ion etching followed by annealing. J. Vac. Sci. Technol. B 22, 2632–2634 (2004)
89.
Zurück zum Zitat T. Kobayashi, Y. Nobuta, Y. Yamauchi, T. Hino, Oblique argon ion etching for copper at elevated temperature. J. Plasma Fusion Res. Series 8, 1358–1360 (2009) T. Kobayashi, Y. Nobuta, Y. Yamauchi, T. Hino, Oblique argon ion etching for copper at elevated temperature. J. Plasma Fusion Res. Series 8, 1358–1360 (2009)
90.
Zurück zum Zitat L.F. Johnson, K.A. Ingersoll, Ion polishing with the aid of a planarizing film. Appl. Opt. 22, 1165–1167 (1983)CrossRef L.F. Johnson, K.A. Ingersoll, Ion polishing with the aid of a planarizing film. Appl. Opt. 22, 1165–1167 (1983)CrossRef
91.
Zurück zum Zitat L.F. Johnson, K.A. Ingersoll, D. Kahng, Planarization of patterned surfaces by ion beam erosion. Appl. Phys. Lett. 40, 636–638 (1982)CrossRef L.F. Johnson, K.A. Ingersoll, D. Kahng, Planarization of patterned surfaces by ion beam erosion. Appl. Phys. Lett. 40, 636–638 (1982)CrossRef
92.
Zurück zum Zitat N. Yamauchi, T. Yachi, T. Wada, A pattern edge profile simulation for oblique ion milling. J. Vac. Sci. Technol. A2, 1552–1557 (1984)CrossRef N. Yamauchi, T. Yachi, T. Wada, A pattern edge profile simulation for oblique ion milling.  J. Vac. Sci. Technol. A2, 1552–1557 (1984)CrossRef
93.
Zurück zum Zitat A.I. Stognij, N.N. Novitskii, An ion-beam apparatus for the surface planarization of oxide materials. Instr. Exp. Tech. 45, 141–151 (2002)CrossRef A.I. Stognij, N.N. Novitskii, An ion-beam apparatus for the surface planarization of oxide materials. Instr. Exp. Tech. 45, 141–151 (2002)CrossRef
94.
Zurück zum Zitat D.F. Grogan, T. Zhao, B.G. Bovard, H.A. Macleod, Planarizing technique for ion-beam polishing of diamond films. Appl. Optics 31, 1483–1487 (1992)CrossRef D.F. Grogan, T. Zhao, B.G. Bovard, H.A. Macleod, Planarizing technique for ion-beam polishing of diamond films. Appl. Optics 31, 1483–1487 (1992)CrossRef
95.
Zurück zum Zitat Y. Li, H. Takino, F. Frost, Ion beam planarization of diamond turned surfaces with various roughness profiles. Opt. Express 25, 7828–7838 (2017)CrossRef Y. Li, H. Takino, F. Frost, Ion beam planarization of diamond turned surfaces with various roughness profiles. Opt. Express 25, 7828–7838 (2017)CrossRef
96.
Zurück zum Zitat F. Frost, H. Takino, R. Fechner, A. Schindler, N. Ohi, K. Nomura, Smoothing of diamond-turned copper surfaces using ion beams with aid of planarizing film Jap. J. Appl. Phys. 46, 6071–6073 (2007)CrossRef F. Frost, H. Takino, R. Fechner, A. Schindler, N. Ohi, K. Nomura, Smoothing of diamond-turned copper surfaces using ion beams with aid of planarizing film Jap. J. Appl. Phys. 46, 6071–6073 (2007)CrossRef
97.
Zurück zum Zitat M. Ulitschka, J. Bauer, F. Frost, T. Arnold, Ion beam planarization of optical aluminum surfaces. J. Astron. Telesc. Instrum. Syst. 6, 014001 (2020) M. Ulitschka, J. Bauer, F. Frost, T. Arnold, Ion beam planarization of optical aluminum surfaces. J. Astron. Telesc. Instrum. Syst. 6, 014001 (2020)
98.
Zurück zum Zitat F. Frost, R. Fechner, D. Flamm, B. Zberi, W. Frank, A. Schindler, Ion beam assisted smoothing of optical surfaces. Appl. Phys. A 78, 651–654 (2004)CrossRef F. Frost, R. Fechner, D. Flamm, B. Zberi, W. Frank, A. Schindler, Ion beam assisted smoothing of optical surfaces. Appl. Phys. A 78, 651–654 (2004)CrossRef
99.
Zurück zum Zitat P. Oelhafen, J.L. Freeouf, G.D. Pettit, J.M. Woodall, Elevated temperature low energy ion cleaning of GaAs. J. Vac. Sci. Technol. B 1, 787–790 (1983)CrossRef P. Oelhafen, J.L. Freeouf, G.D. Pettit, J.M. Woodall, Elevated temperature low energy ion cleaning of GaAs. J. Vac. Sci. Technol. B 1, 787–790 (1983)CrossRef
100.
Zurück zum Zitat U. von Gemmingen, R. Sizmann, Charge states of slow hydrogen ions reflected at single crystal surfaces. Surf. Sci. 114, 445–458 (1982). K.J. Snowden, D.J. O`Conner, R.J. MacDonald, Observation of skipping motion in small-angle ion-surface scattering. Phys. Rev. Lett. 61, 1760–176 (1988) U. von Gemmingen, R. Sizmann, Charge states of slow hydrogen ions reflected at single crystal surfaces. Surf. Sci. 114, 445458 (1982). K.J. Snowden, D.J. O`Conner, R.J. MacDonald, Observation of skipping motion in small-angle ion-surface scattering. Phys. Rev. Lett. 61, 1760–176 (1988)
101.
Zurück zum Zitat M. Holzwarth, M. Wissing, D.S. Simeonova, S. Tzanev, K.J. Snowdon, O.I. Yordanov, Preparation of atomically smooth surfaces via sputtering under glancing incidence conditions. Surf. Sci. 331–333, 1093–1098 (1995)CrossRef M. Holzwarth, M. Wissing, D.S. Simeonova, S. Tzanev, K.J. Snowdon, O.I. Yordanov, Preparation of atomically smooth surfaces via sputtering under glancing incidence conditions. Surf. Sci. 331–333, 1093–1098 (1995)CrossRef
102.
Zurück zum Zitat J.G.C. Labanda, S.A. Barnett, L. Hultman, Sputter cleaning and smoothening of GaAs(001) using glancing-angle ion bombardment. Appl. Phys. Lett. 66, 3114–3116 (1995) and Effects of glancing-angle ion bombardment on GaAs(001). J. Vac. Sci. Technol. B 13, 2260–2268 (1995) J.G.C. Labanda, S.A. Barnett, L. Hultman, Sputter cleaning and smoothening of GaAs(001) using glancing-angle ion bombardment. Appl. Phys. Lett. 66, 31143116 (1995) and Effects of glancing-angle ion bombardment on GaAs(001). J. Vac. Sci. Technol. B 13, 2260–2268 (1995)
103.
Zurück zum Zitat B. Koslowski, S. Strobel, P. Ziemann, Ion polishing of a diamond (100) surface artificially roughened on the nanoscale. Diamond Rel. Mater. 9, 1159–1163 (2000)CrossRef B. Koslowski, S. Strobel, P. Ziemann, Ion polishing of a diamond (100) surface artificially roughened on the nanoscale. Diamond Rel. Mater. 9, 1159–1163 (2000)CrossRef
104.
Zurück zum Zitat J.G.C. Labanda, S.A. Barnett, L. Hultman, Damage-free cleaning of Si (001) using glancing-angle ion bombardment. J. Vac. Sci. Technol. B 16, 1885–1890 (1998)CrossRef J.G.C. Labanda, S.A. Barnett, L. Hultman, Damage-free cleaning of Si (001) using glancing-angle ion bombardment. J. Vac. Sci. Technol. B 16, 1885–1890 (1998)CrossRef
105.
Zurück zum Zitat M. Wißing, M. Holtzwarth, D.S. Simeonova, K.J. Snowdon, An apparatus for glancing incidence ion beam polishing and characterization of surfaces to angstrom-scale root-mean square roughness. Rev. Sci. Instr. 67, 4314–4320 (1996)CrossRef M. Wißing, M. Holtzwarth, D.S. Simeonova, K.J. Snowdon, An apparatus for glancing incidence ion beam polishing and characterization of surfaces to angstrom-scale root-mean square roughness. Rev. Sci. Instr. 67, 4314–4320 (1996)CrossRef
106.
Zurück zum Zitat M. Wißing, M. Batzill, K.J. Snowdon, Preparation by glancing incidence ion irradiation of CaF2 surfaces with angstrom-scale rms roughness. Nanotechnology 8, 40–45 (1997)CrossRef M. Wißing, M. Batzill, K.J. Snowdon, Preparation by glancing incidence ion irradiation of CaF2 surfaces with angstrom-scale rms roughness. Nanotechnology 8, 40–45 (1997)CrossRef
Metadaten
Titel
Ion Beam Figuring and Smoothing
verfasst von
Bernd Rauschenbach
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.