Skip to main content

2014 | OriginalPaper | Buchkapitel

Ion Conduction in Solid Polyelectrolyte Complex Materials

verfasst von : Cornelia Cramer, Monika Schönhoff

Erschienen in: Polyelectrolyte Complexes in the Dispersed and Solid State I

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes the progress made in understanding the mechanisms of ion conduction in polyelectrolyte complexes (PEC). Understanding of ion dynamics is based on frequency-dependent conductivity data obtained by impedance spectroscopy as a function of temperature, hydration, and composition. In most of the work, strong polyelectrolytes such as poly(alkali 4-styrene sulfonate) (AlkaliPSS) and poly(diallyldimethyl ammoniumchloride) (PDADMAC) are employed, forming complexes of type xAlkaliPSS · (1 − x) PDADMAC. The dc conductivity is always determined by the alkali ions, which exhibit a size-dependent mobility. This holds even in PEC with an excess of PDADMAC. The ion dynamics and transport mechanisms are different in PDADMAC-rich and in NaPSS-rich PEC. We review the treatment of the frequency-dependent shape of conductivity spectra by scaling concepts and by models involving forward–backward hopping motions of small ions as well as localized motions of charges. Thus, many quantitative concepts established in other disordered ion conductors can be transferred to PEC. In addition to the well-known time–temperature superposition principle (TTSP), the novel concept of time–humidity superposition (THSP) was established for PEC and describes the dependence of ion dynamics on water content.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bungenberg de Jong HG (1949) In: Kruyt HR (ed) Colloid science. Elsevier, Amsterdam, pp 232–55, 59–330, 5–429 and 33–80 Bungenberg de Jong HG (1949) In: Kruyt HR (ed) Colloid science. Elsevier, Amsterdam, pp 232–55, 59–330, 5–429 and 33–80
2.
Zurück zum Zitat Michaels AS (1965) Polyelectrolyte complexes. J Ind Eng Chem 57:32–40CrossRef Michaels AS (1965) Polyelectrolyte complexes. J Ind Eng Chem 57:32–40CrossRef
3.
Zurück zum Zitat Michaels AS, Falkenstein GL, Schneider NS (1965) Dielectric properties of polyanion– polycation complexes. J Phys Chem 69:1456–1465CrossRef Michaels AS, Falkenstein GL, Schneider NS (1965) Dielectric properties of polyanion– polycation complexes. J Phys Chem 69:1456–1465CrossRef
4.
Zurück zum Zitat Michaels AS, Miekka RG (1961) Polycation–polyanion complexes: preparation and properties of poly(vinylbenzyltrimethylammonium styrenesulfonate). J Phys Chem 65:1765–1773CrossRef Michaels AS, Miekka RG (1961) Polycation–polyanion complexes: preparation and properties of poly(vinylbenzyltrimethylammonium styrenesulfonate). J Phys Chem 65:1765–1773CrossRef
5.
Zurück zum Zitat Michaels AS, Mir L, Schneider NS (1965) A conductometric study of polycation–polyanion reactions in dilute aqueous solution. J Phys Chem 69:1447–1455CrossRef Michaels AS, Mir L, Schneider NS (1965) A conductometric study of polycation–polyanion reactions in dilute aqueous solution. J Phys Chem 69:1447–1455CrossRef
6.
Zurück zum Zitat Philipp B, Dautzenberg H, Linow KJ, Koetz J, Dawydoff W (1989) Polyelectrolyte complexes – recent developments and open problems. Prog Polym Sci 14:91–172CrossRef Philipp B, Dautzenberg H, Linow KJ, Koetz J, Dawydoff W (1989) Polyelectrolyte complexes – recent developments and open problems. Prog Polym Sci 14:91–172CrossRef
7.
Zurück zum Zitat Dautzenberg H (2000) Light scattering studies on polyelectrolyte complexes. Macromol Symp 162:1–21CrossRef Dautzenberg H (2000) Light scattering studies on polyelectrolyte complexes. Macromol Symp 162:1–21CrossRef
8.
Zurück zum Zitat Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. In: Schmidt M (ed) Polyelectrolytes with defined molecular architechture II. Advances in Polymer Science, vol. 166. Springer, Berlin, pp 113–171 Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. In: Schmidt M (ed) Polyelectrolytes with defined molecular architechture II. Advances in Polymer Science, vol. 166. Springer, Berlin, pp 113–171
9.
Zurück zum Zitat Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process. 2. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber Bunsen Ges Phys Chem 95:1430–1434CrossRef Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process. 2. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber Bunsen Ges Phys Chem 95:1430–1434CrossRef
10.
Zurück zum Zitat Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835CrossRef Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835CrossRef
11.
Zurück zum Zitat Bieker P, Schönhoff M (2010) Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules 43:5052–5059CrossRef Bieker P, Schönhoff M (2010) Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules 43:5052–5059CrossRef
12.
Zurück zum Zitat Büscher K, Graf K, Ahrens H, Helm CA (2002) Influence of adsorption conditions on the structure of polyelectrolyte multilayers. Langmuir 18:3585–3591CrossRef Büscher K, Graf K, Ahrens H, Helm CA (2002) Influence of adsorption conditions on the structure of polyelectrolyte multilayers. Langmuir 18:3585–3591CrossRef
13.
Zurück zum Zitat Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRef Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRef
14.
Zurück zum Zitat Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348CrossRef Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348CrossRef
15.
Zurück zum Zitat Schönhoff M (2003) Layered polyelectrolyte complexes: physics of formation and molecular properties. J Phys Condens Matter 15:R1781–R1808CrossRef Schönhoff M (2003) Layered polyelectrolyte complexes: physics of formation and molecular properties. J Phys Condens Matter 15:R1781–R1808CrossRef
16.
Zurück zum Zitat Sukhishvili SA (2005) Responsive polymer films and capsules via layer-by-layer assembly. Curr Opin Colloid Interface Sci 10:37–44CrossRef Sukhishvili SA (2005) Responsive polymer films and capsules via layer-by-layer assembly. Curr Opin Colloid Interface Sci 10:37–44CrossRef
17.
Zurück zum Zitat Rodriguez LNJ, De Paul SM, Barrett CJ, Reven L, Spiess HW (2000) Fast magic-angle spinning and double-quantum H-1 solid-state NMR spectroscopy of polyelectrolyte multilayers. Adv Mater 12:1934–1938CrossRef Rodriguez LNJ, De Paul SM, Barrett CJ, Reven L, Spiess HW (2000) Fast magic-angle spinning and double-quantum H-1 solid-state NMR spectroscopy of polyelectrolyte multilayers. Adv Mater 12:1934–1938CrossRef
18.
Zurück zum Zitat Kovacevic D, van der Burgh S, de Keizer A, Stuart MAC (2002) Kinetics of formation and dissolution of weak polyelectrolyte multilayers: role of salt and free polyions. Langmuir 18:5607–5612CrossRef Kovacevic D, van der Burgh S, de Keizer A, Stuart MAC (2002) Kinetics of formation and dissolution of weak polyelectrolyte multilayers: role of salt and free polyions. Langmuir 18:5607–5612CrossRef
19.
Zurück zum Zitat Sukhishvili SA, Kharlampieva E, Izumrudov V (2006) Where polyelectrolyte multilayers and polyelectrolyte complexes meet. Macromolecules 39:8873–8881CrossRef Sukhishvili SA, Kharlampieva E, Izumrudov V (2006) Where polyelectrolyte multilayers and polyelectrolyte complexes meet. Macromolecules 39:8873–8881CrossRef
20.
Zurück zum Zitat van der Gucht J, Spruijt E, Lemmers M, Stuart MAC (2011) Polyelectrolyte complexes: bulk phases and colloidal systems. J Colloid Interfae Sci 361:407–422CrossRef van der Gucht J, Spruijt E, Lemmers M, Stuart MAC (2011) Polyelectrolyte complexes: bulk phases and colloidal systems. J Colloid Interfae Sci 361:407–422CrossRef
21.
Zurück zum Zitat Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39CrossRef Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39CrossRef
22.
Zurück zum Zitat Cui MZ, Li ZY, Zhang J, Feng SY (2008) Siloxane-based polymer electrolytes. Prog Chem 20:1987–1997 Cui MZ, Li ZY, Zhang J, Feng SY (2008) Siloxane-based polymer electrolytes. Prog Chem 20:1987–1997
23.
Zurück zum Zitat Karatas Y, Kaskhedikar N, Burjanadze M, Wiemhofer HD (2006) Synthesis of cross-linked comb polysiloxane for polymer electrolyte membranes. Macromol Chem Phys 207:419–425CrossRef Karatas Y, Kaskhedikar N, Burjanadze M, Wiemhofer HD (2006) Synthesis of cross-linked comb polysiloxane for polymer electrolyte membranes. Macromol Chem Phys 207:419–425CrossRef
24.
Zurück zum Zitat Kunze M, Karatas Y, Wiemhöfer HD, Eckert H, Schönhoff M (2010) Activation of transport and local dynamics in polysiloxane-based salt-in-polymer electrolytes: a multinuclear NMR study. Phys Chem Chem Phys 12:6844–6851CrossRef Kunze M, Karatas Y, Wiemhöfer HD, Eckert H, Schönhoff M (2010) Activation of transport and local dynamics in polysiloxane-based salt-in-polymer electrolytes: a multinuclear NMR study. Phys Chem Chem Phys 12:6844–6851CrossRef
25.
Zurück zum Zitat Dubreuil F, Elsner N, Fery A (2003) Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur Phys J E Soft Matter Biol Phys 12:215–221CrossRef Dubreuil F, Elsner N, Fery A (2003) Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur Phys J E Soft Matter Biol Phys 12:215–221CrossRef
26.
Zurück zum Zitat Picart C, Senger B, Sengupta K, Dubreuil F, Fery A (2007) Measuring mechanical properties of polyelectrolyte multilayer thin films: novel methods based on AFM and optical techniques. Colloids Surf A 303:30–36CrossRef Picart C, Senger B, Sengupta K, Dubreuil F, Fery A (2007) Measuring mechanical properties of polyelectrolyte multilayer thin films: novel methods based on AFM and optical techniques. Colloids Surf A 303:30–36CrossRef
27.
Zurück zum Zitat Durstock MF, Rubner MF (2001) Dielectric properties of polyelectrolyte multilayers. Langmuir 17:7865–7872CrossRef Durstock MF, Rubner MF (2001) Dielectric properties of polyelectrolyte multilayers. Langmuir 17:7865–7872CrossRef
28.
Zurück zum Zitat DeLongchamp DM, Hammond PT (2003) Fast ion conduction in layer-by-layer polymer films. Chem Mater 15:1165–1173CrossRef DeLongchamp DM, Hammond PT (2003) Fast ion conduction in layer-by-layer polymer films. Chem Mater 15:1165–1173CrossRef
29.
Zurück zum Zitat DeLongchamp DM, Hammond PT (2004) Highly ion conductive poly(ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir 20:5403–5411CrossRef DeLongchamp DM, Hammond PT (2004) Highly ion conductive poly(ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir 20:5403–5411CrossRef
30.
Zurück zum Zitat Akgöl Y, Hofmann C, Karatas Y, Cramer C, Wiemhöfer HD, Schönhoff M (2007) Conductivity spectra of polyphosphazene-based polyelectrolyte multilayers. J Phys Chem B 111:8532–8539CrossRef Akgöl Y, Hofmann C, Karatas Y, Cramer C, Wiemhöfer HD, Schönhoff M (2007) Conductivity spectra of polyphosphazene-based polyelectrolyte multilayers. J Phys Chem B 111:8532–8539CrossRef
31.
Zurück zum Zitat Argun AA, Ashcraft JN, Herring MK, Lee DKY, Allcock HR, Hammond PT (2010) Ion conduction and water transport in polyphosphazene-based multilayers. Chem Mater 22:226–232CrossRef Argun AA, Ashcraft JN, Herring MK, Lee DKY, Allcock HR, Hammond PT (2010) Ion conduction and water transport in polyphosphazene-based multilayers. Chem Mater 22:226–232CrossRef
32.
Zurück zum Zitat Hoogeveen N, Stuart M, Fleer G, Böhmer M (1996) Formation and stability of multilayers of polyelectrolytes. Langmuir 12:3675–3681CrossRef Hoogeveen N, Stuart M, Fleer G, Böhmer M (1996) Formation and stability of multilayers of polyelectrolytes. Langmuir 12:3675–3681CrossRef
33.
Zurück zum Zitat Jaber JA, Schlenoff JB (2007) Counterions and water in polyelectrolyte multilayers: a tale of two polycations. Langmuir 23:896–901CrossRef Jaber JA, Schlenoff JB (2007) Counterions and water in polyelectrolyte multilayers: a tale of two polycations. Langmuir 23:896–901CrossRef
34.
Zurück zum Zitat Crouzier T, Picart C (2009) Ion pairing and hydration in polyelectrolyte multilayer films containing polysaccharides. Biomacromolecules 10:433–442CrossRef Crouzier T, Picart C (2009) Ion pairing and hydration in polyelectrolyte multilayer films containing polysaccharides. Biomacromolecules 10:433–442CrossRef
35.
Zurück zum Zitat Daiko Y, Katagiri K, Matsuda A (2008) Proton conduction in thickness-controlled ultrathin polycation/nafion multilayers prepared via layer-by-layer assembly. Chem Mater 20:6405–6409CrossRef Daiko Y, Katagiri K, Matsuda A (2008) Proton conduction in thickness-controlled ultrathin polycation/nafion multilayers prepared via layer-by-layer assembly. Chem Mater 20:6405–6409CrossRef
36.
Zurück zum Zitat Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18:1232–1238CrossRef Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18:1232–1238CrossRef
37.
Zurück zum Zitat Jiang SP, Liu ZC, Tian ZQ (2006) Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells. Adv Mater 18:1068–1072CrossRef Jiang SP, Liu ZC, Tian ZQ (2006) Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells. Adv Mater 18:1068–1072CrossRef
38.
Zurück zum Zitat Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816CrossRef Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816CrossRef
39.
Zurück zum Zitat Akgöl Y, Cramer C, Hofmann C, Karatas Y, Wiemhöfer HD, Schönhoff M (2010) Humidity-dependent dc conductivity of polyelectrolyte multilayers: protons or other small ions as charge carriers? Macromolecules 43:7282–7287CrossRef Akgöl Y, Cramer C, Hofmann C, Karatas Y, Wiemhöfer HD, Schönhoff M (2010) Humidity-dependent dc conductivity of polyelectrolyte multilayers: protons or other small ions as charge carriers? Macromolecules 43:7282–7287CrossRef
40.
Zurück zum Zitat Imre ÁW, Schönhoff M, Cramer C (2008) A conductivity study and calorimetric analysis of dried poly(sodium 4-styrene sulfonate)/poly(diallyldimethylammonium chloride) polyelectrolyte complexes. J Chem Phys 128:134905CrossRef Imre ÁW, Schönhoff M, Cramer C (2008) A conductivity study and calorimetric analysis of dried poly(sodium 4-styrene sulfonate)/poly(diallyldimethylammonium chloride) polyelectrolyte complexes. J Chem Phys 128:134905CrossRef
41.
Zurück zum Zitat Imre ÁW, Schönhoff M, Cramer C (2009) Unconventional scaling of electrical conductivity spectra for PSS-PDADMAC polyelectrolyte complexes. Phys Rev Lett 102:255901CrossRef Imre ÁW, Schönhoff M, Cramer C (2009) Unconventional scaling of electrical conductivity spectra for PSS-PDADMAC polyelectrolyte complexes. Phys Rev Lett 102:255901CrossRef
42.
Zurück zum Zitat Funke K, Cramer C, Wilmer D (2005) Concept of mismatch and relaxation for self-diffusion and conduction in ionic materials with disordered structures. In: Kärger J, Heitjans P (eds) Diffusion in condensed matter. Springer, Berlin, pp 857–893 Funke K, Cramer C, Wilmer D (2005) Concept of mismatch and relaxation for self-diffusion and conduction in ionic materials with disordered structures. In: Kärger J, Heitjans P (eds) Diffusion in condensed matter. Springer, Berlin, pp 857–893
43.
Zurück zum Zitat Pas SJ, Banhatti RD, Funke K (2006) Conductivity spectra and ion dynamics of a salt-in-polymer electrolyte. Solid State Ionics 177:3135–3139CrossRef Pas SJ, Banhatti RD, Funke K (2006) Conductivity spectra and ion dynamics of a salt-in-polymer electrolyte. Solid State Ionics 177:3135–3139CrossRef
44.
Zurück zum Zitat Santic A, Wrobel W, Mutke M, Banhatti RD, Funke K (2009) Frequency-dependent fluidity and conductivity of an ionic liquid. Phys Chem Chem Phys 11:5930–5934CrossRef Santic A, Wrobel W, Mutke M, Banhatti RD, Funke K (2009) Frequency-dependent fluidity and conductivity of an ionic liquid. Phys Chem Chem Phys 11:5930–5934CrossRef
45.
Zurück zum Zitat Causemann S, Schönhoff M, Eckert H (2011) Local environment and distribution of alkali ions in polyelectrolyte complexes studied by solid-state NMR. Phys Chem Chem Phys 13:8967–8976CrossRef Causemann S, Schönhoff M, Eckert H (2011) Local environment and distribution of alkali ions in polyelectrolyte complexes studied by solid-state NMR. Phys Chem Chem Phys 13:8967–8976CrossRef
46.
Zurück zum Zitat Carrière D, Dubois M, Schönhoff M, Zemb T, Möhwald H (2006) Counter-ion activity and microstructure in polyelectrolyte complexes as determined by osmotic pressure measurements. Phys Chem Chem Phys 8:3141–3146CrossRef Carrière D, Dubois M, Schönhoff M, Zemb T, Möhwald H (2006) Counter-ion activity and microstructure in polyelectrolyte complexes as determined by osmotic pressure measurements. Phys Chem Chem Phys 8:3141–3146CrossRef
47.
Zurück zum Zitat Schönhoff M, Imre ÁW, Bhide A, Cramer C (2010) Mechanisms of ion conduction in polyelectrolyte multilayers and complexes. Z Phys Chem 224:1555–1589CrossRef Schönhoff M, Imre ÁW, Bhide A, Cramer C (2010) Mechanisms of ion conduction in polyelectrolyte multilayers and complexes. Z Phys Chem 224:1555–1589CrossRef
48.
Zurück zum Zitat Bhide A, Schönhoff M, Cramer C (2012) Cation conductivity in dried poly(4-styrene sulfonate) poly(diallydimethylammonium chloride) based polyelectrolyte complexes. Solid State Ionics 214:13–18CrossRef Bhide A, Schönhoff M, Cramer C (2012) Cation conductivity in dried poly(4-styrene sulfonate) poly(diallydimethylammonium chloride) based polyelectrolyte complexes. Solid State Ionics 214:13–18CrossRef
49.
Zurück zum Zitat Bunde A, Ingram MD, Maass P (1994) The dynamic structure model for ion transport in glasses. J Non-Cryst Solids 172:1222–1236CrossRef Bunde A, Ingram MD, Maass P (1994) The dynamic structure model for ion transport in glasses. J Non-Cryst Solids 172:1222–1236CrossRef
50.
Zurück zum Zitat Imre ÁW, Berkemeier F, Mehrer H, Gao Y, Cramer C, Ingram MD (2008) Transition from a single-ion to a collective diffusion mechanism in alkali borate glasses. J Non-Cryst Solids 354:328–332CrossRef Imre ÁW, Berkemeier F, Mehrer H, Gao Y, Cramer C, Ingram MD (2008) Transition from a single-ion to a collective diffusion mechanism in alkali borate glasses. J Non-Cryst Solids 354:328–332CrossRef
51.
Zurück zum Zitat Gao Y, Cramer C (2005) Mixed cation effects in glasses with three types of alkali ions. Solid State Ionics 176:2279–2284CrossRef Gao Y, Cramer C (2005) Mixed cation effects in glasses with three types of alkali ions. Solid State Ionics 176:2279–2284CrossRef
52.
Zurück zum Zitat Roling B (2001) Modeling of ion transport processes in disordered solids: Monte Carlo simulations of the low-temperature particle dynamics in the random barrier model. Phys Chem Chem Phys 3:5093–5098CrossRef Roling B (2001) Modeling of ion transport processes in disordered solids: Monte Carlo simulations of the low-temperature particle dynamics in the random barrier model. Phys Chem Chem Phys 3:5093–5098CrossRef
53.
Zurück zum Zitat Schrøder TB, Dyre JC (2000) Scaling and universality of ac conduction in disordered solids. Phys Rev Lett 84:310–313CrossRef Schrøder TB, Dyre JC (2000) Scaling and universality of ac conduction in disordered solids. Phys Rev Lett 84:310–313CrossRef
54.
Zurück zum Zitat Maass P, Rinn B, Schirmacher W (1999) Hopping dynamics in random energy landscapes: an effective medium approach. Philos Mag B 79:1915–1922CrossRef Maass P, Rinn B, Schirmacher W (1999) Hopping dynamics in random energy landscapes: an effective medium approach. Philos Mag B 79:1915–1922CrossRef
55.
Zurück zum Zitat Dieterich W, Maass P (2002) Non-Debye relaxations in disordered ionic solids. Chem Phys 284:439–467CrossRef Dieterich W, Maass P (2002) Non-Debye relaxations in disordered ionic solids. Chem Phys 284:439–467CrossRef
56.
Zurück zum Zitat Cramer C, Brunklaus S, Gao Y, Funke K (2003) Dynamics of mobile ions in single- and mixed-cation glasses. J Phys Condens Matter 15:S2309–S2321CrossRef Cramer C, Brunklaus S, Gao Y, Funke K (2003) Dynamics of mobile ions in single- and mixed-cation glasses. J Phys Condens Matter 15:S2309–S2321CrossRef
57.
Zurück zum Zitat Cramer C, Akgöl Y, Imre ÁW, Bhide A, Schönhoff M (2009) Ion dynamics in solid polyelectrolyte materials. Z Phys Chem 223:1171–1185CrossRef Cramer C, Akgöl Y, Imre ÁW, Bhide A, Schönhoff M (2009) Ion dynamics in solid polyelectrolyte materials. Z Phys Chem 223:1171–1185CrossRef
58.
Zurück zum Zitat Cramer C, Funke K (1992) Observatio of 2 relaxatio processes in an ion conducting glass yields new structural information. Ber Bunsen Ges Phys Chem 96:1725–1727CrossRef Cramer C, Funke K (1992) Observatio of 2 relaxatio processes in an ion conducting glass yields new structural information. Ber Bunsen Ges Phys Chem 96:1725–1727CrossRef
59.
Zurück zum Zitat Cramer C, Funke K, Saatkamp T, Wilmer D, Ingram MD (1995) High frequency conductivity plateau and ionic hopping processes in a ternary lithium borate glass. Z Naturforsch A Phys Sci 50:613–623 Cramer C, Funke K, Saatkamp T, Wilmer D, Ingram MD (1995) High frequency conductivity plateau and ionic hopping processes in a ternary lithium borate glass. Z Naturforsch A Phys Sci 50:613–623
60.
Zurück zum Zitat Funke K, Maue T, Wilmer D, Cramer C, Saatkamp T (1994) Different kinds of localized hopping in solid electrolytes. In: Ramanarayanan TA, Worrell WL, Tuller HL (eds) Ionic and mixed conducting ceramics. The Electrochemical Society Softbound Proceedings, Pennington, pp 564–573 Funke K, Maue T, Wilmer D, Cramer C, Saatkamp T (1994) Different kinds of localized hopping in solid electrolytes. In: Ramanarayanan TA, Worrell WL, Tuller HL (eds) Ionic and mixed conducting ceramics. The Electrochemical Society Softbound Proceedings, Pennington, pp 564–573
61.
Zurück zum Zitat Laughman DM, Banhatti RD, Funke K (2009) Nearly constant loss effects in borate glasses. Phys Chem Chem Phys 11:3158–3167CrossRef Laughman DM, Banhatti RD, Funke K (2009) Nearly constant loss effects in borate glasses. Phys Chem Chem Phys 11:3158–3167CrossRef
62.
Zurück zum Zitat Rinn B, Dieterich W, Maass P (1998) Stochastic modelling of ion dynamics in complex systems: dipolar effects. Philos Mag B 77:1283–1292CrossRef Rinn B, Dieterich W, Maass P (1998) Stochastic modelling of ion dynamics in complex systems: dipolar effects. Philos Mag B 77:1283–1292CrossRef
63.
Zurück zum Zitat Knödler D, Dieterich W, Petersen J (1992) Coulombic traps and ion conduction in glassy electrolytes. Solid State Ionics 53:1135–1140CrossRef Knödler D, Dieterich W, Petersen J (1992) Coulombic traps and ion conduction in glassy electrolytes. Solid State Ionics 53:1135–1140CrossRef
64.
Zurück zum Zitat Köhler R, Dönch I, Ott P, Laschewsky A, Fery A, Krastev R (2009) Neutron reflectometry study of swelling of polyelectrolyte multilayers in water vapors: influence of charge density of the polycation. Langmuir 25:11576–11585CrossRef Köhler R, Dönch I, Ott P, Laschewsky A, Fery A, Krastev R (2009) Neutron reflectometry study of swelling of polyelectrolyte multilayers in water vapors: influence of charge density of the polycation. Langmuir 25:11576–11585CrossRef
65.
Zurück zum Zitat Kügler R, Schmitt J, Knoll W (2002) The swelling behavior of polyelectrolyte multilayers in air of different relative humidity and in water. Macromol Chem Phys 203:413–419CrossRef Kügler R, Schmitt J, Knoll W (2002) The swelling behavior of polyelectrolyte multilayers in air of different relative humidity and in water. Macromol Chem Phys 203:413–419CrossRef
66.
Zurück zum Zitat De S, Cramer C, Schönhoff M (2011) Humidity dependence of the ionic conductivity of polyelectrolyte complexes. Macromolecules 44:8936–8943CrossRef De S, Cramer C, Schönhoff M (2011) Humidity dependence of the ionic conductivity of polyelectrolyte complexes. Macromolecules 44:8936–8943CrossRef
67.
Zurück zum Zitat Cramer C, De S, Schönhoff M (2011) Time-humidity-superposition principle in electrical conductivity spectra of ion-conducting polymers. Phys Rev Lett 107:028301CrossRef Cramer C, De S, Schönhoff M (2011) Time-humidity-superposition principle in electrical conductivity spectra of ion-conducting polymers. Phys Rev Lett 107:028301CrossRef
68.
Zurück zum Zitat Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Fundamental questions relating to ion conduction in disordered solids. Rep Prog Phys 72: 046501 Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Fundamental questions relating to ion conduction in disordered solids. Rep Prog Phys 72: 046501
69.
Zurück zum Zitat Summerfield S (1985) Universal low-frequency behavior in the ac hopping conductivity of dispersed systems. Philos Mag B 52:9–22CrossRef Summerfield S (1985) Universal low-frequency behavior in the ac hopping conductivity of dispersed systems. Philos Mag B 52:9–22CrossRef
70.
Zurück zum Zitat Summerfield S, Butcher PN (1985) Universal behavior of ac hopping conductivity of disordered systems. J Non-Cryst Solids 77–8:135–138CrossRef Summerfield S, Butcher PN (1985) Universal behavior of ac hopping conductivity of disordered systems. J Non-Cryst Solids 77–8:135–138CrossRef
71.
Zurück zum Zitat Murugavel S, Roling B (2002) Ac conductivity spectra of alkali tellurite glasses: composition-dependent deviations from the Summerfield scaling. Phys Rev Lett 89:195902CrossRef Murugavel S, Roling B (2002) Ac conductivity spectra of alkali tellurite glasses: composition-dependent deviations from the Summerfield scaling. Phys Rev Lett 89:195902CrossRef
72.
Zurück zum Zitat Murugavel S, Roling B (2004) Ionic transport in glassy networks with high electronic polarizabilities: conductivity spectroscopic results indicating a vacancy-type transport mechanism. J Phys Chem B 108:2564–2567CrossRef Murugavel S, Roling B (2004) Ionic transport in glassy networks with high electronic polarizabilities: conductivity spectroscopic results indicating a vacancy-type transport mechanism. J Phys Chem B 108:2564–2567CrossRef
73.
Zurück zum Zitat Baranovskii SD, Cordes H (1999) On the conduction mechanism in ionic glasses. J Chem Phys 111:7546–7557CrossRef Baranovskii SD, Cordes H (1999) On the conduction mechanism in ionic glasses. J Chem Phys 111:7546–7557CrossRef
74.
Zurück zum Zitat Ravaine D, Souquet JL (1977) Thermodynamic approachto ionic conductivity in oxide glasses. 1. Correlation of ionic conductivity with chemical potential of alkali oxide in oxide glasses. Phys Chem Glasses 18:27–31 Ravaine D, Souquet JL (1977) Thermodynamic approachto ionic conductivity in oxide glasses. 1. Correlation of ionic conductivity with chemical potential of alkali oxide in oxide glasses. Phys Chem Glasses 18:27–31
75.
Zurück zum Zitat Spruijt E, Sprakel J, Lemmers M, Stuart MAC, van der Gucht J (2010) Relaxation dynamics at different time scales in electrostatic complexes: time-salt superposition. Phys Rev Lett 105:208301CrossRef Spruijt E, Sprakel J, Lemmers M, Stuart MAC, van der Gucht J (2010) Relaxation dynamics at different time scales in electrostatic complexes: time-salt superposition. Phys Rev Lett 105:208301CrossRef
76.
Zurück zum Zitat Imre ÁW, Voss S, Mehrer H (2002) Ionic transport in 0.2[XNa2O·(1-X)Rb2O]·0.8B2O3 mixed-alkali glasses. Phys Chem Chem Phys 4:3219–3224 Imre ÁW, Voss S, Mehrer H (2002) Ionic transport in 0.2[XNa2O·(1-X)Rb2O]·0.8B2O3 mixed-alkali glasses. Phys Chem Chem Phys 4:3219–3224
77.
Zurück zum Zitat Cramer C, Brückner S, Gao Y, Funke K (2002) Ion dynamics in mixed alkali glasses. Phys Chem Chem Phys 4:3214–3218CrossRef Cramer C, Brückner S, Gao Y, Funke K (2002) Ion dynamics in mixed alkali glasses. Phys Chem Chem Phys 4:3214–3218CrossRef
Metadaten
Titel
Ion Conduction in Solid Polyelectrolyte Complex Materials
verfasst von
Cornelia Cramer
Monika Schönhoff
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/12_2012_203

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.