Skip to main content

2022 | OriginalPaper | Buchkapitel

4. Ionic Self-Assembly of Dendrimers

verfasst von : Alberto Concellón, Verónica Iguarbe

Erschienen in: Supramolecular Assemblies Based on Electrostatic Interactions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dendrimers are highly branched macromolecules that possess a large number of functional groups at the periphery. Among the different types of dendrimers, those bearing charged sites in their structure, namely ionic dendrimers, attract increasing attention due to their exceptional self-assembling properties. These charged sites stimulate a cooperative binding mechanism that extends toward the formation of nanostructures both in bulk and in solution. Specifically, ionic dendrimers self-assemble in the solid state forming liquid crystal phases, even without being functionalized with liquid crystal units. Ionic dendrimers also self-assemble in solution leading to a wide variety of nanostructures, such as micelles or vesicles. The self-assembly of ionic dendrimers is a hot topic in materials science, and they have found several potential applications in ion conductive materials, optoelectronics, drug delivery, or gene transfection. The main objective of this chapter is to give a comprehensive overview of the functions, structures, and properties of these self-assembling ionic dendrimers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tomalia DA, Fréchet JMJ (2002) Dendrimers and other dendritic polymers. Wiley, Chichester Tomalia DA, Fréchet JMJ (2002) Dendrimers and other dendritic polymers. Wiley, Chichester
2.
Zurück zum Zitat Caminade AM, Yan D, Smith DK (2015) Dendrimers and hyperbranched polymers. Chem Soc Rev 44(12):3870–3873PubMedCrossRef Caminade AM, Yan D, Smith DK (2015) Dendrimers and hyperbranched polymers. Chem Soc Rev 44(12):3870–3873PubMedCrossRef
3.
Zurück zum Zitat Yan D, Gao C, Frey H (2011) Hyperbranched polymers: synthesis, properties, and applications. Wiley, HobokenCrossRef Yan D, Gao C, Frey H (2011) Hyperbranched polymers: synthesis, properties, and applications. Wiley, HobokenCrossRef
4.
Zurück zum Zitat Buhleier E, Wehner W, Vögtle F (1978) “Cascade”- and “Nonskid-Chain-like” syntheses of molecular cavity topologies. Synthesis 2:155–158CrossRef Buhleier E, Wehner W, Vögtle F (1978) “Cascade”- and “Nonskid-Chain-like” syntheses of molecular cavity topologies. Synthesis 2:155–158CrossRef
5.
Zurück zum Zitat Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50(11):2003–2004 Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50(11):2003–2004
6.
Zurück zum Zitat Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29(2):138–175CrossRef Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29(2):138–175CrossRef
7.
Zurück zum Zitat Caminade AM, Ouali A, Laurent R, Turrin CO, Majoral JP (2015) The dendritic effect illustrated with phosphorus dendrimers. Chem Soc Rev 44(12):3890–3899PubMedCrossRef Caminade AM, Ouali A, Laurent R, Turrin CO, Majoral JP (2015) The dendritic effect illustrated with phosphorus dendrimers. Chem Soc Rev 44(12):3890–3899PubMedCrossRef
8.
Zurück zum Zitat Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19(9):2466–2468CrossRef Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19(9):2466–2468CrossRef
9.
Zurück zum Zitat Hawker C, Frechet JMJ (1990) A new convergent approach to monodisperse dendritic macromolecules. J Chem Soc Chem Comm (15), 1010–1013 Hawker C, Frechet JMJ (1990) A new convergent approach to monodisperse dendritic macromolecules. J Chem Soc Chem Comm (15), 1010–1013
10.
Zurück zum Zitat Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons: concepts, syntheses. Applications. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRef Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons: concepts, syntheses. Applications. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRef
11.
Zurück zum Zitat Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRef Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRef
12.
Zurück zum Zitat Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110(4):1857–1959PubMedCrossRef Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110(4):1857–1959PubMedCrossRef
13.
Zurück zum Zitat Walter MV, Malkoch M (2006) Accelerated approaches to dendrimers. In: Materials science and technology, pp 1027–1056 Walter MV, Malkoch M (2006) Accelerated approaches to dendrimers. In: Materials science and technology, pp 1027–1056
14.
Zurück zum Zitat Lundberg P, Hawker CJ, Hult A, Malkoch M (2008) Click assisted one-pot multi-step reactions in polymer science: accelerated synthetic protocols. Macromol Rapid Commun 29(12–13):998–1015CrossRef Lundberg P, Hawker CJ, Hult A, Malkoch M (2008) Click assisted one-pot multi-step reactions in polymer science: accelerated synthetic protocols. Macromol Rapid Commun 29(12–13):998–1015CrossRef
15.
Zurück zum Zitat Faul CFJ (2014) Ionic self-assembly for functional hierarchical nanostructured materials. Acc Chem Res 47(12):3428–3438PubMedCrossRef Faul CFJ (2014) Ionic self-assembly for functional hierarchical nanostructured materials. Acc Chem Res 47(12):3428–3438PubMedCrossRef
16.
Zurück zum Zitat Faul CFJ, Antonietti M (2003) Ionic self-assembly: facile synthesis of supramolecular materials. Adv Mater 15(9):673–683CrossRef Faul CFJ, Antonietti M (2003) Ionic self-assembly: facile synthesis of supramolecular materials. Adv Mater 15(9):673–683CrossRef
17.
Zurück zum Zitat Salikolimi K, Sudhakar AA, Ishida Y (2020) Functional ionic liquid crystals. Langmuir 36(40):11702–11731PubMedCrossRef Salikolimi K, Sudhakar AA, Ishida Y (2020) Functional ionic liquid crystals. Langmuir 36(40):11702–11731PubMedCrossRef
18.
Zurück zum Zitat Goossens K, Lava K, Bielawski CW, Binnemans K (2016) Ionic liquid crystals: versatile materials. Chem Rev 116(8):4643–4807PubMedCrossRef Goossens K, Lava K, Bielawski CW, Binnemans K (2016) Ionic liquid crystals: versatile materials. Chem Rev 116(8):4643–4807PubMedCrossRef
19.
Zurück zum Zitat Stoddart JF, Ashton PR, Shibata K, Shipway AN (1997) Polycationic dendrimers. Angew Chem Int Ed 36(24):2781–2783CrossRef Stoddart JF, Ashton PR, Shibata K, Shipway AN (1997) Polycationic dendrimers. Angew Chem Int Ed 36(24):2781–2783CrossRef
20.
Zurück zum Zitat Kleij AW, van de Coevering R, Klein Gebbink RJM, Noordman A-M, Spek AL, van Koten G (2001) Polycationic (Mixed) core-shell dendrimers for binding and delivery of inorganic/organic substrates. Chem Eur J 7(1):181–192PubMedCrossRef Kleij AW, van de Coevering R, Klein Gebbink RJM, Noordman A-M, Spek AL, van Koten G (2001) Polycationic (Mixed) core-shell dendrimers for binding and delivery of inorganic/organic substrates. Chem Eur J 7(1):181–192PubMedCrossRef
21.
Zurück zum Zitat van de Coevering R, Bruijnincx PCA, Lutz M, Spek AL, van Koten G, Klein Gebbink RJM (2007) Ionic core–shell dendrimers with a polycationic core: structural aspects and host–guest binding properties. New J Chem 31(7):1337–1348CrossRef van de Coevering R, Bruijnincx PCA, Lutz M, Spek AL, van Koten G, Klein Gebbink RJM (2007) Ionic core–shell dendrimers with a polycationic core: structural aspects and host–guest binding properties. New J Chem 31(7):1337–1348CrossRef
22.
Zurück zum Zitat van de Coevering R, Bruijnincx PCA, van Walree CA, Klein Gebbink RJM, van Koten G (2007) Dendritic host molecules with a polycationic core and an outer shell of dodecyl groups. Eur J Org Chem 2007(18):2931–2939CrossRef van de Coevering R, Bruijnincx PCA, van Walree CA, Klein Gebbink RJM, van Koten G (2007) Dendritic host molecules with a polycationic core and an outer shell of dodecyl groups. Eur J Org Chem 2007(18):2931–2939CrossRef
23.
Zurück zum Zitat van de Coevering R, Alfers AP, Meeldijk JD, Martínez-Viviente E, Pregosin PS, Klein Gebbink RJM, van Koten G (2006) Ionic core−shell dendrimers with an octacationic core as noncovalent supports for homogeneous catalysts. J Am Chem Soc 128(39):12700–12713PubMedCrossRef van de Coevering R, Alfers AP, Meeldijk JD, Martínez-Viviente E, Pregosin PS, Klein Gebbink RJM, van Koten G (2006) Ionic core−shell dendrimers with an octacationic core as noncovalent supports for homogeneous catalysts. J Am Chem Soc 128(39):12700–12713PubMedCrossRef
24.
Zurück zum Zitat van de Coevering R, Kuil M, Gebbink RJMK, van Koten G (2002) A polycationic dendrimer as noncovalent support for anionic organometallic complexes. Chem Commun 15:1636–1637 van de Coevering R, Kuil M, Gebbink RJMK, van Koten G (2002) A polycationic dendrimer as noncovalent support for anionic organometallic complexes. Chem Commun 15:1636–1637
25.
Zurück zum Zitat Ong W, Grindstaff J, Sobransingh D, Toba R, Quintela JM, Peinador C, Kaifer AE (2005) Electrochemical and guest binding properties of fréchet- and newkome-type dendrimers with a single viologen unit located at their apical positions. J Am Chem Soc 127(10):3353–3361PubMedCrossRef Ong W, Grindstaff J, Sobransingh D, Toba R, Quintela JM, Peinador C, Kaifer AE (2005) Electrochemical and guest binding properties of fréchet- and newkome-type dendrimers with a single viologen unit located at their apical positions. J Am Chem Soc 127(10):3353–3361PubMedCrossRef
26.
27.
Zurück zum Zitat Wöhrle T, Wurzbach I, Kirres J, Kostidou A, Kapernaum N, Litterscheidt J, Haenle JC, Staffeld P, Baro A, Giesselmann F, Laschat S (2015) Discotic liquid crystals. Chem Rev 116(3):1139–1241 Wöhrle T, Wurzbach I, Kirres J, Kostidou A, Kapernaum N, Litterscheidt J, Haenle JC, Staffeld P, Baro A, Giesselmann F, Laschat S (2015) Discotic liquid crystals. Chem Rev 116(3):1139–1241
28.
Zurück zum Zitat Gimeno, N.; Ros, M. B., (2014) Chemical structures, mesogenic properties, and synthesis of liquid crystals with bent‐core structures. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds) Handbook of liquid crystals, vol 4. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–75 Gimeno, N.; Ros, M. B., (2014) Chemical structures, mesogenic properties, and synthesis of liquid crystals with bent‐core structures. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds) Handbook of liquid crystals, vol 4. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–75
29.
Zurück zum Zitat Gorecka E, Vaupotič N, Pociecha D (2014) Smectic phases of bent-core liquid crystals. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes P (eds) Handbook of liquid crystals, vol 4. Wiley‐VCH, Weinheim Gorecka E, Vaupotič N, Pociecha D (2014) Smectic phases of bent-core liquid crystals. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes P (eds) Handbook of liquid crystals, vol 4. Wiley‐VCH, Weinheim
30.
Zurück zum Zitat Gorecka E, Pociecha D, Vaupotič N (2014) Columnar liquid crystalline phases made of bent-core mesogens. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes P (eds) Handbook of liquid crystals, vol 4. Wiley‐VCH, Weinheim Gorecka E, Pociecha D, Vaupotič N (2014) Columnar liquid crystalline phases made of bent-core mesogens. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes P (eds) Handbook of liquid crystals, vol 4. Wiley‐VCH, Weinheim
31.
Zurück zum Zitat Ungar G, Liu F, Zeng X (2014) Cubic and Other 3D thermotropic liquid crystal phases and quasicrystals. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes P (eds) Handbook of liquid crystals, vol 5. Wiley-VCH Verlag GmbH & Co. KGaA, pp 363–436 Ungar G, Liu F, Zeng X (2014) Cubic and Other 3D thermotropic liquid crystal phases and quasicrystals. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes P (eds) Handbook of liquid crystals, vol 5. Wiley-VCH Verlag GmbH & Co. KGaA, pp 363–436
32.
Zurück zum Zitat van der Asdonk P, Kouwer PHJ (2017) Liquid crystal templating as an approach to spatially and temporally organise soft matter. Chem Soc Rev 46(19):5935–5949PubMedCrossRef van der Asdonk P, Kouwer PHJ (2017) Liquid crystal templating as an approach to spatially and temporally organise soft matter. Chem Soc Rev 46(19):5935–5949PubMedCrossRef
33.
Zurück zum Zitat Tschierske C (2013) Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Ed 52(34):8828–8878CrossRef Tschierske C (2013) Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Ed 52(34):8828–8878CrossRef
34.
35.
Zurück zum Zitat Kato T, Uchida J, Ichikawa T, Sakamoto T (2018) Functional liquid crystals towards the next generation of materials. Angew Chem Int Ed 57(16):4355–4371CrossRef Kato T, Uchida J, Ichikawa T, Sakamoto T (2018) Functional liquid crystals towards the next generation of materials. Angew Chem Int Ed 57(16):4355–4371CrossRef
36.
Zurück zum Zitat Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M (2017) Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater 2:17001CrossRef Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M (2017) Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater 2:17001CrossRef
37.
Zurück zum Zitat Concellón A, Zentner CA, Swager TM (2019) Dynamic complex liquid crystal emulsions. J Am Chem Soc 141(45):18246–18255PubMedCrossRef Concellón A, Zentner CA, Swager TM (2019) Dynamic complex liquid crystal emulsions. J Am Chem Soc 141(45):18246–18255PubMedCrossRef
38.
Zurück zum Zitat Nayani K, Yang Y, Yu H, Jani P, Mavrikakis M, Abbott N (2020) Areas of opportunity related to design of chemical and biological sensors based on liquid crystals. Liq Cryst Today 29(2):24–35CrossRef Nayani K, Yang Y, Yu H, Jani P, Mavrikakis M, Abbott N (2020) Areas of opportunity related to design of chemical and biological sensors based on liquid crystals. Liq Cryst Today 29(2):24–35CrossRef
39.
Zurück zum Zitat Concellón A, Fong D, Swager TM (2021) Complex liquid crystal emulsions for biosensing. J Am Chem Soc 143(24):9177–9182PubMedCrossRef Concellón A, Fong D, Swager TM (2021) Complex liquid crystal emulsions for biosensing. J Am Chem Soc 143(24):9177–9182PubMedCrossRef
40.
Zurück zum Zitat Hernández-Ainsa S, Marcos M, Serrano JL (2014) Dendrimeric and hyperbranched liquid crystal structures. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds) Handbook of liquid crystals, vol 7. Wiley-VCH Verlag GmbH & Co. KGaA, pp 259–300 Hernández-Ainsa S, Marcos M, Serrano JL (2014) Dendrimeric and hyperbranched liquid crystal structures. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds) Handbook of liquid crystals, vol 7. Wiley-VCH Verlag GmbH & Co. KGaA, pp 259–300
41.
Zurück zum Zitat Donnio B, Buathong S, Bury I, Guillon D (2007) Liquid crystalline dendrimers. Chem Soc Rev 36(9):1495–1513PubMedCrossRef Donnio B, Buathong S, Bury I, Guillon D (2007) Liquid crystalline dendrimers. Chem Soc Rev 36(9):1495–1513PubMedCrossRef
42.
Zurück zum Zitat Barberá J, Donnio B, Gehringer L, Guillon D, Marcos M, Omenat A, Serrano JL (2005) Self-organization of nanostructured functional dendrimers. J Mater Chem 15(38):4093–4105CrossRef Barberá J, Donnio B, Gehringer L, Guillon D, Marcos M, Omenat A, Serrano JL (2005) Self-organization of nanostructured functional dendrimers. J Mater Chem 15(38):4093–4105CrossRef
43.
Zurück zum Zitat Marcos M, Martín-Rapún R, Omenat A, Serrano JL (2007) Highly congested liquid crystal structures: dendrimers, dendrons, dendronized and hyperbranched polymers. Chem Soc Rev 36(12):1889–1901PubMedCrossRef Marcos M, Martín-Rapún R, Omenat A, Serrano JL (2007) Highly congested liquid crystal structures: dendrimers, dendrons, dendronized and hyperbranched polymers. Chem Soc Rev 36(12):1889–1901PubMedCrossRef
44.
Zurück zum Zitat Friberg SE, Podzimek M, Tomalia DA, Hedstrand DM (1988) A non-aqueous lyotropic liquid crystal with a starburst dendrimer as a solvent. Mol Cryst Liq Cryst 164(1):157–165 Friberg SE, Podzimek M, Tomalia DA, Hedstrand DM (1988) A non-aqueous lyotropic liquid crystal with a starburst dendrimer as a solvent. Mol Cryst Liq Cryst 164(1):157–165
45.
Zurück zum Zitat Tsiourvas D, Felekis T, Sideratou Z, Paleos CM (2004) Ionic liquid crystals derived from the protonation of poly(propylene imine) dendrimers with a cholesterol-based carboxylic acid. Liq Cryst 31(5):739–744CrossRef Tsiourvas D, Felekis T, Sideratou Z, Paleos CM (2004) Ionic liquid crystals derived from the protonation of poly(propylene imine) dendrimers with a cholesterol-based carboxylic acid. Liq Cryst 31(5):739–744CrossRef
46.
Zurück zum Zitat Ujiie S, Yano Y, Mori A (2004) Liquid-crystalline branched polymers having ionic moieties. Mol Cryst Liq Cryst 411(1):483–489CrossRef Ujiie S, Yano Y, Mori A (2004) Liquid-crystalline branched polymers having ionic moieties. Mol Cryst Liq Cryst 411(1):483–489CrossRef
47.
Zurück zum Zitat Martín-Rapún R, Marcos M, Omenat A, Barberá J, Romero P, Serrano JL (2005) Ionic thermotropic liquid crystal dendrimers. J Am Chem Soc 127(20):7397–7403PubMedCrossRef Martín-Rapún R, Marcos M, Omenat A, Barberá J, Romero P, Serrano JL (2005) Ionic thermotropic liquid crystal dendrimers. J Am Chem Soc 127(20):7397–7403PubMedCrossRef
48.
Zurück zum Zitat Marcos M, Martín-Rapún R, Omenat A, Barberá J, Serrano JL (2006) Ionic liquid crystal dendrimers with mono-, di- and trisubstituted benzoic acids. Chem Mater 18(5):1206–1212CrossRef Marcos M, Martín-Rapún R, Omenat A, Barberá J, Serrano JL (2006) Ionic liquid crystal dendrimers with mono-, di- and trisubstituted benzoic acids. Chem Mater 18(5):1206–1212CrossRef
49.
Zurück zum Zitat Martín-Rapún R, Marcos M, Omenat A, Serrano JL, de Givenchy ET, Guittard F (2007) Liquid crystalline semifluorinated ionic dendrimers. Liq Cryst 34(3):395–400CrossRef Martín-Rapún R, Marcos M, Omenat A, Serrano JL, de Givenchy ET, Guittard F (2007) Liquid crystalline semifluorinated ionic dendrimers. Liq Cryst 34(3):395–400CrossRef
50.
Zurück zum Zitat Hernández-Ainsa S, Marcos M, Barberá J, Serrano JL (2010) Philic and phobic segregation in liquid-crystal ionic dendrimers: an enthalpy-entropy competition. Angew Chem Int Ed 49(11):1990–1994CrossRef Hernández-Ainsa S, Marcos M, Barberá J, Serrano JL (2010) Philic and phobic segregation in liquid-crystal ionic dendrimers: an enthalpy-entropy competition. Angew Chem Int Ed 49(11):1990–1994CrossRef
51.
Zurück zum Zitat Hernández-Ainsa S, Barberá J, Marcos M, Serrano JL (2010) Effect of the phobic segregation between fluorinated and perhydrogenated chains on the supramolecular organization in ionic aromatic dendrimers. Chem Mater 22(16):4762–4768CrossRef Hernández-Ainsa S, Barberá J, Marcos M, Serrano JL (2010) Effect of the phobic segregation between fluorinated and perhydrogenated chains on the supramolecular organization in ionic aromatic dendrimers. Chem Mater 22(16):4762–4768CrossRef
52.
Zurück zum Zitat Mezzenga R, Ruokolainen J, Canilho N, Kasëmi E, Schlüter DA, Lee WB, Fredrickson GH (2009) Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals. Soft Matter 5(1):92–97CrossRef Mezzenga R, Ruokolainen J, Canilho N, Kasëmi E, Schlüter DA, Lee WB, Fredrickson GH (2009) Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals. Soft Matter 5(1):92–97CrossRef
53.
Zurück zum Zitat Soininen AJ, Kasëmi E, Schlüter AD, Ikkala O, Ruokolainen J, Mezzenga R (2010) Self-assembly and induced circular dichroism in dendritic supramolecules with cholesteric pendant groups. J Am Chem Soc 132(31):10882–10890PubMedCrossRef Soininen AJ, Kasëmi E, Schlüter AD, Ikkala O, Ruokolainen J, Mezzenga R (2010) Self-assembly and induced circular dichroism in dendritic supramolecules with cholesteric pendant groups. J Am Chem Soc 132(31):10882–10890PubMedCrossRef
54.
Zurück zum Zitat Cook AG, Baumeister U, Tschierske C (2005) Supramolecular dendrimers: unusual mesophases of ionic liquid crystals derived from protonation of DAB dendrimers with facial amphiphilic carboxylic acids. J Mater Chem 15(17):1708–1721CrossRef Cook AG, Baumeister U, Tschierske C (2005) Supramolecular dendrimers: unusual mesophases of ionic liquid crystals derived from protonation of DAB dendrimers with facial amphiphilic carboxylic acids. J Mater Chem 15(17):1708–1721CrossRef
55.
Zurück zum Zitat Vergara J, Gimeno N, Cano M, Barberá J, Romero P, Serrano JL, Ros MB (2011) Mesomorphism from bent-core based ionic dendritic macromolecules. Chem Mater 23(22):4931–4940CrossRef Vergara J, Gimeno N, Cano M, Barberá J, Romero P, Serrano JL, Ros MB (2011) Mesomorphism from bent-core based ionic dendritic macromolecules. Chem Mater 23(22):4931–4940CrossRef
56.
Zurück zum Zitat Fitié CFC, Mendes E, Hempenius MA, Sijbesma RP (2011) Self-assembled superlattices of polyamines in a columnar liquid crystal. Macromolecules 44(4):757–766CrossRef Fitié CFC, Mendes E, Hempenius MA, Sijbesma RP (2011) Self-assembled superlattices of polyamines in a columnar liquid crystal. Macromolecules 44(4):757–766CrossRef
57.
Zurück zum Zitat Fitié CFC, Tomatsu I, Byelov D, de Jeu WH, Sijbesma RP (2008) Nanostructured materials through orthogonal self-assembly in a columnar liquid crystal. Chem Mater 20(6):2394–2404CrossRef Fitié CFC, Tomatsu I, Byelov D, de Jeu WH, Sijbesma RP (2008) Nanostructured materials through orthogonal self-assembly in a columnar liquid crystal. Chem Mater 20(6):2394–2404CrossRef
58.
Zurück zum Zitat Marcos M, Alcalá R, Barberá J, Romero P, Sánchez C, Serrano JL (2008) Photosensitive ionic nematic liquid crystalline complexes based on dendrimers and hyperbranched polymers and a cyanoazobenzene carboxylic acid. Chem Mater 20(16):5209–5217CrossRef Marcos M, Alcalá R, Barberá J, Romero P, Sánchez C, Serrano JL (2008) Photosensitive ionic nematic liquid crystalline complexes based on dendrimers and hyperbranched polymers and a cyanoazobenzene carboxylic acid. Chem Mater 20(16):5209–5217CrossRef
59.
Zurück zum Zitat Hernández-Ainsa S, Barberá J, Marcos M, Romero P, Serrano JL (2012) Thermotropic mesomorphism via self-assembly of cationic dendritic polymers with an anionic polar carboxylic acid. Macromol Chem Phys 213(3):270–277CrossRef Hernández-Ainsa S, Barberá J, Marcos M, Romero P, Serrano JL (2012) Thermotropic mesomorphism via self-assembly of cationic dendritic polymers with an anionic polar carboxylic acid. Macromol Chem Phys 213(3):270–277CrossRef
60.
Zurück zum Zitat Chen Y, Shen Z, Gehringer L, Frey H, Stiriba S-E (2006) Supramolecular thermotropic liquid crystalline materials with nematic mesophase based on methylated hyperbranched polyethylenimine and mesogenic carboxylic acid. Macromol Rapid Commun 27(1):69–75CrossRef Chen Y, Shen Z, Gehringer L, Frey H, Stiriba S-E (2006) Supramolecular thermotropic liquid crystalline materials with nematic mesophase based on methylated hyperbranched polyethylenimine and mesogenic carboxylic acid. Macromol Rapid Commun 27(1):69–75CrossRef
61.
Zurück zum Zitat Concellón A, Hernández-Ainsa S, Barberá J, Romero P, Serrano JL, Marcos M (2018) Proton conductive ionic liquid crystalline poly(ethyleneimine) polymers functionalized with oxadiazole. RSC Adv 8(66):37700–37706PubMedPubMedCentralCrossRef Concellón A, Hernández-Ainsa S, Barberá J, Romero P, Serrano JL, Marcos M (2018) Proton conductive ionic liquid crystalline poly(ethyleneimine) polymers functionalized with oxadiazole. RSC Adv 8(66):37700–37706PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Hernández-Ainsa S, Barberá J, Marcos M, Serrano JL (2012) Liquid crystalline ionic dendrimers containing luminescent oxadiazole moieties. Macromolecules 45(2):1006–1015CrossRef Hernández-Ainsa S, Barberá J, Marcos M, Serrano JL (2012) Liquid crystalline ionic dendrimers containing luminescent oxadiazole moieties. Macromolecules 45(2):1006–1015CrossRef
63.
Zurück zum Zitat Castelar S, Romero P, Serrano JL, Barberá J, Marcos M (2015) Multifunctional ionic hybrid poly(propyleneimine) dendrimers surrounded by carbazole dendrons: liquid crystals, optical and electrochemical properties. RSC Adv 5(81):65932–65941CrossRef Castelar S, Romero P, Serrano JL, Barberá J, Marcos M (2015) Multifunctional ionic hybrid poly(propyleneimine) dendrimers surrounded by carbazole dendrons: liquid crystals, optical and electrochemical properties. RSC Adv 5(81):65932–65941CrossRef
64.
Zurück zum Zitat Concellón A, Liang T, Schenning APHJ, Serrano JL, Romero P, Marcos M (2018) Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers. J Mater Chem C 6(5):1000–1007CrossRef Concellón A, Liang T, Schenning APHJ, Serrano JL, Romero P, Marcos M (2018) Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers. J Mater Chem C 6(5):1000–1007CrossRef
65.
Zurück zum Zitat Imam MR, Peterca M, Edlund U, Balagurusamy VSK, Percec V (2009) Dendronized supramolecular polymers self-assembled from dendritic ionic liquids. J Polym Sci Part A: Polym Chem 47(16):4165–4193 Imam MR, Peterca M, Edlund U, Balagurusamy VSK, Percec V (2009) Dendronized supramolecular polymers self-assembled from dendritic ionic liquids. J Polym Sci Part A: Polym Chem 47(16):4165–4193
66.
Zurück zum Zitat Ungar G, Liu Y, Zeng X, Percec V, Cho W-D (2003) Giant supramolecular liquid crystal lattice. Science 299(5610):1208–1211PubMedCrossRef Ungar G, Liu Y, Zeng X, Percec V, Cho W-D (2003) Giant supramolecular liquid crystal lattice. Science 299(5610):1208–1211PubMedCrossRef
67.
Zurück zum Zitat Yoshio M, Mukai T, Ohno H, Kato T (2004) One-dimensional ion transport in self-organized columnar ionic liquids. J Am Chem Soc 126(4):994–995PubMedCrossRef Yoshio M, Mukai T, Ohno H, Kato T (2004) One-dimensional ion transport in self-organized columnar ionic liquids. J Am Chem Soc 126(4):994–995PubMedCrossRef
68.
Zurück zum Zitat Masafumi Y, Takahiro I, Harutoki S, Takayoshi K, Atsushi H, Tomohiro M, Hiroyuki O, Takashi K (2007) Columnar liquid-crystalline imidazolium salts. Effects of anions and cations on mesomorphic properties and ionic conductivities. Bull Chem Soc Jpn 80(9):1836–1841 Masafumi Y, Takahiro I, Harutoki S, Takayoshi K, Atsushi H, Tomohiro M, Hiroyuki O, Takashi K (2007) Columnar liquid-crystalline imidazolium salts. Effects of anions and cations on mesomorphic properties and ionic conductivities. Bull Chem Soc Jpn 80(9):1836–1841
69.
Zurück zum Zitat Soberats B, Uchida E, Yoshio M, Kagimoto J, Ohno H, Kato T (2014) Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal. J Am Chem Soc 136(27):9552–9555PubMedCrossRef Soberats B, Uchida E, Yoshio M, Kagimoto J, Ohno H, Kato T (2014) Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal. J Am Chem Soc 136(27):9552–9555PubMedCrossRef
70.
Zurück zum Zitat Ichikawa T, Yoshio M, Hamasaki A, Mukai T, Ohno H, Kato T (2007) Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J Am Chem Soc 129(35):10662–10663PubMedCrossRef Ichikawa T, Yoshio M, Hamasaki A, Mukai T, Ohno H, Kato T (2007) Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J Am Chem Soc 129(35):10662–10663PubMedCrossRef
71.
Zurück zum Zitat Ichikawa T, Yoshio M, Hamasaki A, Taguchi S, Liu F, Zeng XB, Ungar G, Ohno H, Kato T (2012) Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts. J Am Chem Soc 134(5):2634–2643PubMedCrossRef Ichikawa T, Yoshio M, Hamasaki A, Taguchi S, Liu F, Zeng XB, Ungar G, Ohno H, Kato T (2012) Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts. J Am Chem Soc 134(5):2634–2643PubMedCrossRef
72.
Zurück zum Zitat Thota BNS, Urner LH, Haag R (2016) Supramolecular architectures of dendritic amphiphiles in water. Chem Rev 116(4):2079–2102PubMedCrossRef Thota BNS, Urner LH, Haag R (2016) Supramolecular architectures of dendritic amphiphiles in water. Chem Rev 116(4):2079–2102PubMedCrossRef
73.
Zurück zum Zitat Krieger A, Fuenzalida Werner JP, Mariani G, Gröhn F (2017) Functional supramolecular porphyrin-dendrimer assemblies for light harvesting and photocatalysis. Macromolecules 50(9):3464–3475CrossRef Krieger A, Fuenzalida Werner JP, Mariani G, Gröhn F (2017) Functional supramolecular porphyrin-dendrimer assemblies for light harvesting and photocatalysis. Macromolecules 50(9):3464–3475CrossRef
74.
Zurück zum Zitat Mariani G, Moldenhauer D, Schweins R, Gröhn F (2016) Elucidating electrostatic self-assembly: molecular parameters as key to thermodynamics and nanoparticle shape. J Am Chem Soc 138(4):1280–1293PubMedCrossRef Mariani G, Moldenhauer D, Schweins R, Gröhn F (2016) Elucidating electrostatic self-assembly: molecular parameters as key to thermodynamics and nanoparticle shape. J Am Chem Soc 138(4):1280–1293PubMedCrossRef
75.
Zurück zum Zitat Düring J, Hölzer A, Kolb U, Branscheid R, Gröhn F (2013) Supramolecular organic-inorganic hybrid assemblies with tunable particle size: interplay of three noncovalent interactions. Angew Chem Int Ed 52(33):8742–8745CrossRef Düring J, Hölzer A, Kolb U, Branscheid R, Gröhn F (2013) Supramolecular organic-inorganic hybrid assemblies with tunable particle size: interplay of three noncovalent interactions. Angew Chem Int Ed 52(33):8742–8745CrossRef
76.
Zurück zum Zitat Willerich I, Gröhn F (2010) Photoswitchable nanoassemblies by electrostatic self-assembly. Angew Chem Int Ed 49(44):8104–8108CrossRef Willerich I, Gröhn F (2010) Photoswitchable nanoassemblies by electrostatic self-assembly. Angew Chem Int Ed 49(44):8104–8108CrossRef
77.
Zurück zum Zitat Willerich I, Gröhn F (2008) Switchable nanoassemblies from macroions and multivalent dye counterions. Chem Eur J 14(30):9112–9116PubMedCrossRef Willerich I, Gröhn F (2008) Switchable nanoassemblies from macroions and multivalent dye counterions. Chem Eur J 14(30):9112–9116PubMedCrossRef
78.
Zurück zum Zitat Lukowiak MC, Thota BNS, Haag R (2015) Dendritic core–shell systems as soft drug delivery nanocarriers. Biotechnol Adv 33(6, Part 3):1327–1341 Lukowiak MC, Thota BNS, Haag R (2015) Dendritic core–shell systems as soft drug delivery nanocarriers. Biotechnol Adv 33(6, Part 3):1327–1341
79.
Zurück zum Zitat Fan X, Li Z, Loh XJ (2016) Recent development of unimolecular micelles as functional materials and applications. Polym Chem 7(38):5898–5919CrossRef Fan X, Li Z, Loh XJ (2016) Recent development of unimolecular micelles as functional materials and applications. Polym Chem 7(38):5898–5919CrossRef
80.
Zurück zum Zitat Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170CrossRef Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170CrossRef
81.
Zurück zum Zitat Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269PubMedCrossRef Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269PubMedCrossRef
82.
Zurück zum Zitat Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G (2008) Block copolymer nanostructures. Nano Today 3(3–4):38–46CrossRef Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G (2008) Block copolymer nanostructures. Nano Today 3(3–4):38–46CrossRef
83.
Zurück zum Zitat Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30(4–5):267–277PubMedCrossRef Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30(4–5):267–277PubMedCrossRef
84.
85.
Zurück zum Zitat Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 72:1525–1568CrossRef Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 72:1525–1568CrossRef
86.
Zurück zum Zitat Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, Pricl S, Liang XJ, Rocchi P, Peng L (2015) Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. PNAS 112(10):2978–2983PubMedPubMedCentralCrossRef Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, Pricl S, Liang XJ, Rocchi P, Peng L (2015) Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. PNAS 112(10):2978–2983PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Sherman SE, Xiao Q, Percec V (2017) Mimicking complex biological membranes and their programmable glycan ligands with dendrimersomes and glycodendrimersomes. Chem Rev 117(9):6538–6631PubMedCrossRef Sherman SE, Xiao Q, Percec V (2017) Mimicking complex biological membranes and their programmable glycan ligands with dendrimersomes and glycodendrimersomes. Chem Rev 117(9):6538–6631PubMedCrossRef
88.
Zurück zum Zitat Liko F, Hindré F, Fernández-Megía E (2016) Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromol 17(10):3103–3114CrossRef Liko F, Hindré F, Fernández-Megía E (2016) Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromol 17(10):3103–3114CrossRef
89.
Zurück zum Zitat Fedeli E, Hernández-Ainsa S, Lancelot A, González-Pastor R, Calvo P, Sierra T, Serrano JL (2015) Nanoobjects formed by ionic PAMAM dendrimers: hydrophilic/lipophilic modulation and encapsulation properties. Soft Matter 11(30):6009–6017PubMedCrossRef Fedeli E, Hernández-Ainsa S, Lancelot A, González-Pastor R, Calvo P, Sierra T, Serrano JL (2015) Nanoobjects formed by ionic PAMAM dendrimers: hydrophilic/lipophilic modulation and encapsulation properties. Soft Matter 11(30):6009–6017PubMedCrossRef
90.
Zurück zum Zitat Hernández-Ainsa S, Fedeli E, Barberá J, Marcos M, Sierra T, Serrano JL (2014) Self-assembly modulation in ionic PAMAM derivatives. Soft Matter 10(2):281–289PubMedCrossRef Hernández-Ainsa S, Fedeli E, Barberá J, Marcos M, Sierra T, Serrano JL (2014) Self-assembly modulation in ionic PAMAM derivatives. Soft Matter 10(2):281–289PubMedCrossRef
91.
Zurück zum Zitat Hernández-Ainsa S, Barberá J, Marcos M, Serrano JL (2011) Nanoobjects coming from mesomorphic ionic PAMAM dendrimers. Soft Matter 7(6):2560–2568CrossRef Hernández-Ainsa S, Barberá J, Marcos M, Serrano JL (2011) Nanoobjects coming from mesomorphic ionic PAMAM dendrimers. Soft Matter 7(6):2560–2568CrossRef
92.
Zurück zum Zitat Concellón A, San Anselmo M, Hernández-Ainsa S, Romero P, Marcos M, Serrano JL (2020) Micellar nanocarriers from dendritic macromolecules containing fluorescent coumarin moieties. Polymers 12(12):2872PubMedCentralCrossRef Concellón A, San Anselmo M, Hernández-Ainsa S, Romero P, Marcos M, Serrano JL (2020) Micellar nanocarriers from dendritic macromolecules containing fluorescent coumarin moieties. Polymers 12(12):2872PubMedCentralCrossRef
93.
Zurück zum Zitat Cano M, Sánchez-Ferrer A, Serrano JL, Gimeno N, Ros MB (2014) Supramolecular architectures from bent-core dendritic molecules. Angew Chem Int Ed 53(49):13449–13453CrossRef Cano M, Sánchez-Ferrer A, Serrano JL, Gimeno N, Ros MB (2014) Supramolecular architectures from bent-core dendritic molecules. Angew Chem Int Ed 53(49):13449–13453CrossRef
94.
Zurück zum Zitat Castillo-Vallés M, Cano M, Bermejo-Sanz A, Gimeno N, Ros MB (2020) Towards supramolecular nanostructured materials: control of the self-assembly of ionic bent-core amphiphiles. J Mater Chem C 8(6):1998–2007CrossRef Castillo-Vallés M, Cano M, Bermejo-Sanz A, Gimeno N, Ros MB (2020) Towards supramolecular nanostructured materials: control of the self-assembly of ionic bent-core amphiphiles. J Mater Chem C 8(6):1998–2007CrossRef
95.
Zurück zum Zitat Castillo-Vallés M, Romero P, Sebastián V, Ros MB (2021) Microfluidics for the rapid and controlled preparation of organic nanotubes of bent-core based dendrimers. Nanoscale Adv 3(6):1682–1689CrossRef Castillo-Vallés M, Romero P, Sebastián V, Ros MB (2021) Microfluidics for the rapid and controlled preparation of organic nanotubes of bent-core based dendrimers. Nanoscale Adv 3(6):1682–1689CrossRef
96.
Zurück zum Zitat Mignani S, Shi X, Zablocka M, Majoral J-P (2021) Dendritic macromolecular architectures: dendrimer-based polyion complex micelles. Biomacromol 22(2):262–274CrossRef Mignani S, Shi X, Zablocka M, Majoral J-P (2021) Dendritic macromolecular architectures: dendrimer-based polyion complex micelles. Biomacromol 22(2):262–274CrossRef
97.
Zurück zum Zitat Lopez-Blanco R, Fernandez-Villamarin M, Jatunov S, Novoa-Carballal R, Fernandez-Megia E (2019) Polysaccharides meet dendrimers to fine-tune the stability and release properties of polyion complex micelles. Polym Chem 10(34):4709–4717CrossRef Lopez-Blanco R, Fernandez-Villamarin M, Jatunov S, Novoa-Carballal R, Fernandez-Megia E (2019) Polysaccharides meet dendrimers to fine-tune the stability and release properties of polyion complex micelles. Polym Chem 10(34):4709–4717CrossRef
98.
Zurück zum Zitat Nishiyama N, Jang W-D, Kataoka K (2007) Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery. New J Chem 31(7):1074–1082CrossRef Nishiyama N, Jang W-D, Kataoka K (2007) Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery. New J Chem 31(7):1074–1082CrossRef
99.
Zurück zum Zitat Mignani S, Shi X, Karpus A, Majoral JP (2021) Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: an opportunity to develop new CNS drugs. Eur J Med Chem 209, 112905 Mignani S, Shi X, Karpus A, Majoral JP (2021) Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: an opportunity to develop new CNS drugs. Eur J Med Chem 209, 112905
100.
Zurück zum Zitat Qiu Z, Huang J, Liu L, Li C, Cohen Stuart MA, Wang J (2020) Effects of pH on the formation of PIC micelles from PAMAM dendrimers. Langmuir 36(29):8367–8374PubMedCrossRef Qiu Z, Huang J, Liu L, Li C, Cohen Stuart MA, Wang J (2020) Effects of pH on the formation of PIC micelles from PAMAM dendrimers. Langmuir 36(29):8367–8374PubMedCrossRef
101.
Zurück zum Zitat Fernandez-Villamarin M, Sousa-Herves A, Porto S, Guldris N, Martínez-Costas J, Riguera R, Fernandez-Megia E (2017) A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles. Polym Chem 8(16):2528–2537CrossRef Fernandez-Villamarin M, Sousa-Herves A, Porto S, Guldris N, Martínez-Costas J, Riguera R, Fernandez-Megia E (2017) A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles. Polym Chem 8(16):2528–2537CrossRef
102.
Zurück zum Zitat Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH (1991) Unimolecular micelles. Angew Chem Int Ed 30(9):1178–1180CrossRef Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH (1991) Unimolecular micelles. Angew Chem Int Ed 30(9):1178–1180CrossRef
103.
Zurück zum Zitat Hawker CJ, Wooley KL, Fréchet, JMJ (1993) Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc Perkin Trans 1(12):1287–1297 Hawker CJ, Wooley KL, Fréchet, JMJ (1993) Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc Perkin Trans 1(12):1287–1297
104.
Zurück zum Zitat Hayouni S, Robert A, Maes C, Conreux A, Marin B, Mohamadou A, Bouquillon S (2018) New dendritic ionic liquids (DILs) for the extraction of metallic species from water. New J Chem 42(22):18010–18020CrossRef Hayouni S, Robert A, Maes C, Conreux A, Marin B, Mohamadou A, Bouquillon S (2018) New dendritic ionic liquids (DILs) for the extraction of metallic species from water. New J Chem 42(22):18010–18020CrossRef
105.
Zurück zum Zitat Haensler J, Szoka FC (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem 4(5):372–379CrossRef Haensler J, Szoka FC (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem 4(5):372–379CrossRef
106.
Zurück zum Zitat Kesharwani P, Banerjee S, Gupta U, Mohd Amin MCI, Padhye S, Sarkar FH, Iyer AK (2015) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18(10):565–572CrossRef Kesharwani P, Banerjee S, Gupta U, Mohd Amin MCI, Padhye S, Sarkar FH, Iyer AK (2015) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18(10):565–572CrossRef
107.
Zurück zum Zitat Labieniec-Watala M, Watala C (2015) PAMAM dendrimers: destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications. J Pharm Sci 104(1):2–14PubMedCrossRef Labieniec-Watala M, Watala C (2015) PAMAM dendrimers: destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications. J Pharm Sci 104(1):2–14PubMedCrossRef
108.
Zurück zum Zitat Choi JS, Nam K, Park J-Y, Kim J-B, Lee J-K, Park J-S (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J Control Release 99(3):445–456PubMedCrossRef Choi JS, Nam K, Park J-Y, Kim J-B, Lee J-K, Park J-S (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J Control Release 99(3):445–456PubMedCrossRef
109.
Zurück zum Zitat Kono K, Akiyama H, Takahashi T, Takagishi T, Harada A (2005) Transfection activity of polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery. Bioconjugate Chem 16(1):208–214CrossRef Kono K, Akiyama H, Takahashi T, Takagishi T, Harada A (2005) Transfection activity of polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery. Bioconjugate Chem 16(1):208–214CrossRef
110.
Zurück zum Zitat Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K (2003) In vitro and in vivo gene transfer by an optimized α-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjugate Chem 14(2):342–350CrossRef Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K (2003) In vitro and in vivo gene transfer by an optimized α-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjugate Chem 14(2):342–350CrossRef
111.
Zurück zum Zitat Arima H, Kihara F, Hirayama F, Uekama K (2001) Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins. Bioconjugate Chem 12(4):476–484CrossRef Arima H, Kihara F, Hirayama F, Uekama K (2001) Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins. Bioconjugate Chem 12(4):476–484CrossRef
112.
Zurück zum Zitat Luong D, Kesharwani P, Deshmukh R, Mohd Amin MCI, Gupta U, Greish K, Iyer AK (2016) PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 43:14–29PubMedCrossRef Luong D, Kesharwani P, Deshmukh R, Mohd Amin MCI, Gupta U, Greish K, Iyer AK (2016) PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 43:14–29PubMedCrossRef
113.
Zurück zum Zitat Nam K, Jung S, Nam J-P, Kim SW (2015) Poly(ethylenimine) conjugated bioreducible dendrimer for efficient gene delivery. J Control Release 220:447–455PubMedPubMedCentralCrossRef Nam K, Jung S, Nam J-P, Kim SW (2015) Poly(ethylenimine) conjugated bioreducible dendrimer for efficient gene delivery. J Control Release 220:447–455PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Loup C, Zanta M-A, Caminade A-M, Majoral J-P, Meunier B (1999) Preparation of water-soluble cationic phosphorus-containing dendrimers as DNA transfecting agents. Chem Eur J 5(12):3644–3650CrossRef Loup C, Zanta M-A, Caminade A-M, Majoral J-P, Meunier B (1999) Preparation of water-soluble cationic phosphorus-containing dendrimers as DNA transfecting agents. Chem Eur J 5(12):3644–3650CrossRef
115.
Zurück zum Zitat Shcharbin D, Dzmitruk V, Shakhbazau A, Goncharova N, Seviaryn I, Kosmacheva S, Potapnev M, Pedziwiatr-Werbicka E, Bryszewska M, Talabaev M, Chernov A, Kulchitsky V, Caminade A-M, Majoral J-P (2011) Fourth generation phosphorus-containing dendrimers: prospective drug and gene delivery carrier. Pharmaceutics 3(3):458–473PubMedPubMedCentralCrossRef Shcharbin D, Dzmitruk V, Shakhbazau A, Goncharova N, Seviaryn I, Kosmacheva S, Potapnev M, Pedziwiatr-Werbicka E, Bryszewska M, Talabaev M, Chernov A, Kulchitsky V, Caminade A-M, Majoral J-P (2011) Fourth generation phosphorus-containing dendrimers: prospective drug and gene delivery carrier. Pharmaceutics 3(3):458–473PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Lancelot A, González-Pastor R, Concellón A, Sierra T, Martín-Duque P, Serrano JL (2017) DNA transfection to mesenchymal stem cells using a novel type of pseudodendrimer based on 2,2-bis(hydroxymethyl)propionic acid. Bioconjugate Chem 28(4):1135–1150CrossRef Lancelot A, González-Pastor R, Concellón A, Sierra T, Martín-Duque P, Serrano JL (2017) DNA transfection to mesenchymal stem cells using a novel type of pseudodendrimer based on 2,2-bis(hydroxymethyl)propionic acid. Bioconjugate Chem 28(4):1135–1150CrossRef
Metadaten
Titel
Ionic Self-Assembly of Dendrimers
verfasst von
Alberto Concellón
Verónica Iguarbe
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-00657-9_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.