Skip to main content

2022 | OriginalPaper | Buchkapitel

5. Nano-Objects by Spontaneous Electrostatic Self-Assembly in Aqueous Solution

verfasst von : Alexander Zika, Anja Krieger, Franziska Gröhn

Erschienen in: Supramolecular Assemblies Based on Electrostatic Interactions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrostatic self-assembly for the formation of well-defined nano-objects in solution represents an emerging field. The key is to use building blocks with a certain geometry and/or a combination of noncovalent interaction types. Polyelectrolytes providing both stability and designability are especially valuable. Central for a targeted design is the fundamental understanding of structure-directing effects. This chapter addresses both an introduction to the field of spontaneous electrostatic self-assembly as well as the state of the art of its understanding. It commences from the special effects of polyelectrolytes, shortly pictures the established areas of polyelectrolyte complexes and block polyelectrolyte micelles, before focusing on novel approaches: Besides discussing the interplay of ionic and π-π interaction in a dendrimer-dye model system, we elucidate how thermodynamics encodes the nanoscale structure: the free energy determines the aggregation number but the entropy/enthalpy ratio the nano-object’s shape. The approach’s versatility applicable for building blocks from linear or cylindrical brush polyelectrolytes, proteins, DNA, polyoxometalate clusters to micelles is demonstrated. We provide examples of photocatalytic activity and triggering of the nano-objects’ size, shape, or function (e.g., enzyme activity) by addressing multiple stimuli such as pH and light. This includes the novel use of photoacids as interconnecting counterions with light-switchable valency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pauling L (2000) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Ithaca, Cornell Univ. Press, New York Pauling L (2000) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Ithaca, Cornell Univ. Press, New York
2.
Zurück zum Zitat Förster S, Schmidt M (1995) Polyelectrolytes in solution. In: Abe A, Benoit H, Cantow H-J, Corradini P, Dušek K, Edwards S et al (eds) Physical Properties of Polymers: Berlin, Heidelberg: Springer Berlin Heidelberg, pp 51–133 Förster S, Schmidt M (1995) Polyelectrolytes in solution. In: Abe A, Benoit H, Cantow H-J, Corradini P, Dušek K, Edwards S et al (eds) Physical Properties of Polymers: Berlin, Heidelberg: Springer Berlin Heidelberg, pp 51–133
3.
Zurück zum Zitat Schmitz KS (1993) Macroions in solution and colloidal suspension. VCH, New York Schmitz KS (1993) Macroions in solution and colloidal suspension. VCH, New York
4.
Zurück zum Zitat Ito K, Yoshida H, Ise N (1994) Void structure in colloidal dispersions. Science 263(5143):66–68PubMedCrossRef Ito K, Yoshida H, Ise N (1994) Void structure in colloidal dispersions. Science 263(5143):66–68PubMedCrossRef
5.
Zurück zum Zitat Gröhn F, Antonietti M (2000) Intermolecular structure of spherical polyelectrolyte microgels in salt-free solution. 1. Quantification of the attraction between equally charged polyelectrolytes. Macromolecules 33(16):5938–5949 Gröhn F, Antonietti M (2000) Intermolecular structure of spherical polyelectrolyte microgels in salt-free solution. 1. Quantification of the attraction between equally charged polyelectrolytes. Macromolecules 33(16):5938–5949
6.
Zurück zum Zitat Förster S, Schmidt M, Antonietti M (1990) Static and dynamic light scattering by aqueous polyelectrolyte solutions: effect of molecular weight, charge density and added salt. Polymer 31(5):781–792CrossRef Förster S, Schmidt M, Antonietti M (1990) Static and dynamic light scattering by aqueous polyelectrolyte solutions: effect of molecular weight, charge density and added salt. Polymer 31(5):781–792CrossRef
7.
Zurück zum Zitat Sedlák M, Amis EJ (1992) Concentration and molecular weight regime diagram of salt-free polyelectrolyte solutions as studied by light scattering. J Chem Phys 96(1):826–834CrossRef Sedlák M, Amis EJ (1992) Concentration and molecular weight regime diagram of salt-free polyelectrolyte solutions as studied by light scattering. J Chem Phys 96(1):826–834CrossRef
8.
Zurück zum Zitat Antonietti M, Briel A, Gröhn F (2000) Spherical polyelectrolyte microgels in salt free solution. 2. combined analysis of static structure and viscosity. Macromolecules 33(16): 5950– 5953 Antonietti M, Briel A, Gröhn F (2000) Spherical polyelectrolyte microgels in salt free solution. 2. combined analysis of static structure and viscosity. Macromolecules 33(16): 5950– 5953
9.
Zurück zum Zitat Ikeda Y, Beer M, Schmidt M et al (1998) Ca 2+ and Cu 2+ induced conformational changes of sodium polymethacrylate in dilute aqueous solution. Macromolecules 31(3):728–733CrossRef Ikeda Y, Beer M, Schmidt M et al (1998) Ca 2+ and Cu 2+ induced conformational changes of sodium polymethacrylate in dilute aqueous solution. Macromolecules 31(3):728–733CrossRef
10.
Zurück zum Zitat Schweins R, Huber K (2001) Collapse of sodium polyacrylate chains in calcium salt solutions. Eur Physi J E 5(1):117–126CrossRef Schweins R, Huber K (2001) Collapse of sodium polyacrylate chains in calcium salt solutions. Eur Physi J E 5(1):117–126CrossRef
11.
Zurück zum Zitat Goerigk G, Huber K, Schweins R (2007) Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: a quantitative anomalous small-angle x-ray scattering study. J Chem Phys 127(15):154908 Goerigk G, Huber K, Schweins R (2007) Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: a quantitative anomalous small-angle x-ray scattering study. J Chem Phys 127(15):154908
12.
Zurück zum Zitat Lages S, Michels R, Huber K (2010) Coil-Collapse and coil-aggregation due to the interaction of Cu2+ and Ca2+ ions with anionic polyacrylate chains in dilute solution. Macromolecules 43(6):3027–3035CrossRef Lages S, Michels R, Huber K (2010) Coil-Collapse and coil-aggregation due to the interaction of Cu2+ and Ca2+ ions with anionic polyacrylate chains in dilute solution. Macromolecules 43(6):3027–3035CrossRef
13.
Zurück zum Zitat Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley-VCH, New York, NY Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley-VCH, New York, NY
14.
Zurück zum Zitat Sinn CG, Dimova R, Antonietti M (2004) Isothermal titration calorimetry of the polyelectrolyte/water interaction and binding of Ca2+ effects determining the quality of polymeric scale inhibitors. Macromolecules 37(9):3444–3450CrossRef Sinn CG, Dimova R, Antonietti M (2004) Isothermal titration calorimetry of the polyelectrolyte/water interaction and binding of Ca2+ effects determining the quality of polymeric scale inhibitors. Macromolecules 37(9):3444–3450CrossRef
16.
Zurück zum Zitat Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437(7059):640–647PubMedCrossRef Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437(7059):640–647PubMedCrossRef
17.
Zurück zum Zitat Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106(3):521–533CrossRef Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106(3):521–533CrossRef
18.
Zurück zum Zitat Tanford C (1962) Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J Am Chem Soc 84(22):4240–4247CrossRef Tanford C (1962) Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J Am Chem Soc 84(22):4240–4247CrossRef
19.
Zurück zum Zitat Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200(4345):1012–1018PubMedCrossRef Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200(4345):1012–1018PubMedCrossRef
20.
Zurück zum Zitat Kukula H, Schlaad H, Antonietti M et al (2002) The formation of polymer vesicles or “peptosomes” by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution. J Am Chem Soc 124(8):1658–1663PubMedCrossRef Kukula H, Schlaad H, Antonietti M et al (2002) The formation of polymer vesicles or “peptosomes” by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution. J Am Chem Soc 124(8):1658–1663PubMedCrossRef
21.
Zurück zum Zitat Cougnon FBL, Caprice K, Pupier M et al (2018) A strategy to synthesize molecular knots and links using the hydrophobic effect. J Am Chem Soc 140(39):12442–12450PubMedCrossRef Cougnon FBL, Caprice K, Pupier M et al (2018) A strategy to synthesize molecular knots and links using the hydrophobic effect. J Am Chem Soc 140(39):12442–12450PubMedCrossRef
22.
Zurück zum Zitat Antonietti M, Förster S, Hartmann J et al (1996) Novel amphiphilic block copolymers by polymer reactions and their use for solubilization of metal salts and metal colloids. Macromolecules 29(11):3800–3806CrossRef Antonietti M, Förster S, Hartmann J et al (1996) Novel amphiphilic block copolymers by polymer reactions and their use for solubilization of metal salts and metal colloids. Macromolecules 29(11):3800–3806CrossRef
23.
Zurück zum Zitat Li Z, Kesselman E, Talmon Y et al (2004) Multicompartment micelles from ABC miktoarm stars in water. Science 306(5693):98–101PubMedCrossRef Li Z, Kesselman E, Talmon Y et al (2004) Multicompartment micelles from ABC miktoarm stars in water. Science 306(5693):98–101PubMedCrossRef
24.
Zurück zum Zitat Lipshutz BH, Ghorai S, Cortes-Clerget M (2018) The hydrophobic effect applied to organic synthesis: recent synthetic chemistry “in water.” Chem Eur J 24(26):6672–6695PubMedCrossRef Lipshutz BH, Ghorai S, Cortes-Clerget M (2018) The hydrophobic effect applied to organic synthesis: recent synthetic chemistry “in water.” Chem Eur J 24(26):6672–6695PubMedCrossRef
25.
Zurück zum Zitat Arunan E, Desiraju GR, Klein RA et al (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83(8):1637–1641CrossRef Arunan E, Desiraju GR, Klein RA et al (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83(8):1637–1641CrossRef
26.
27.
Zurück zum Zitat Grabowski SJ (2004) Hydrogen bonding strength—measures based on geometric and topological parameters. J Phys Org Chem 17(1):18–31CrossRef Grabowski SJ (2004) Hydrogen bonding strength—measures based on geometric and topological parameters. J Phys Org Chem 17(1):18–31CrossRef
28.
Zurück zum Zitat Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356):737–738PubMedCrossRef Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356):737–738PubMedCrossRef
29.
Zurück zum Zitat Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci 37(4):205–211PubMedCrossRefPubMedCentral Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci 37(4):205–211PubMedCrossRefPubMedCentral
30.
Zurück zum Zitat Wang Y, Liu M, Gao J (2020) Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc Natl Acad Sci 117(25):13967–13974PubMedCrossRefPubMedCentral Wang Y, Liu M, Gao J (2020) Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc Natl Acad Sci 117(25):13967–13974PubMedCrossRefPubMedCentral
31.
Zurück zum Zitat Brunsveld L, Folmer BJ, Meijer EW et al (2001) Supramolecular polymers. Chem Rev 101(12):4071–4098PubMedCrossRef Brunsveld L, Folmer BJ, Meijer EW et al (2001) Supramolecular polymers. Chem Rev 101(12):4071–4098PubMedCrossRef
32.
Zurück zum Zitat Schmuck C, Wienand W (2001) Self-complementary quadruple hydrogen-bonding motifs as a functional principle: from dimeric supramolecules to supramolecular polymers. Angew Chem Int Ed 40(23):4363CrossRef Schmuck C, Wienand W (2001) Self-complementary quadruple hydrogen-bonding motifs as a functional principle: from dimeric supramolecules to supramolecular polymers. Angew Chem Int Ed 40(23):4363CrossRef
33.
Zurück zum Zitat Mazzier D, De S, Wicher B et al (2020) Parallel homochiral and anti-parallel heterochiral hydrogen-bonding interfaces in multi-helical abiotic foldamers. Angew Chem Int Ed 59(4):1606–1610CrossRef Mazzier D, De S, Wicher B et al (2020) Parallel homochiral and anti-parallel heterochiral hydrogen-bonding interfaces in multi-helical abiotic foldamers. Angew Chem Int Ed 59(4):1606–1610CrossRef
34.
Zurück zum Zitat Cao J, Lu C, Zhuang J et al (2017) Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew Chem Int Ed 56(30):8795–8800CrossRef Cao J, Lu C, Zhuang J et al (2017) Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew Chem Int Ed 56(30):8795–8800CrossRef
35.
Zurück zum Zitat Song Y, Liu Y, Qi T et al (2018) Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew Chem Int Ed 57(42):13838–13842CrossRef Song Y, Liu Y, Qi T et al (2018) Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew Chem Int Ed 57(42):13838–13842CrossRef
36.
Zurück zum Zitat Tamate R, Hashimoto K, Horii T et al (2018) Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater 30(36):e1802792 Tamate R, Hashimoto K, Horii T et al (2018) Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater 30(36):e1802792
37.
Zurück zum Zitat Steed JW, Turner DR, Wallace KJ (2007) Core concepts in supramolecular chemistry and nanochemistry. John Wiley, Chichester, England, Hoboken, NJ Steed JW, Turner DR, Wallace KJ (2007) Core concepts in supramolecular chemistry and nanochemistry. John Wiley, Chichester, England, Hoboken, NJ
38.
Zurück zum Zitat Li F, Liu D, Wang T et al (2017) J-aggregation in porphyrin nanoparticles induced by diphenylalanine. J Solid State Chem 252:86–92CrossRef Li F, Liu D, Wang T et al (2017) J-aggregation in porphyrin nanoparticles induced by diphenylalanine. J Solid State Chem 252:86–92CrossRef
39.
Zurück zum Zitat Maiti NC, Mazumdar S, Periasamy N (1998) J- and H-Aggregates of porphyrin−surfactant complexes: time-resolved fluorescence and other spectroscopic studies. J Phys Chem B 102(9):1528–1538CrossRef Maiti NC, Mazumdar S, Periasamy N (1998) J- and H-Aggregates of porphyrin−surfactant complexes: time-resolved fluorescence and other spectroscopic studies. J Phys Chem B 102(9):1528–1538CrossRef
40.
Zurück zum Zitat Pasternack RF, Huber PR, Boyd P et al (1972) On the aggregation of meso-substituted water-soluble porphyrins. J Am Chem Soc 94(13):4511–4517PubMedCrossRef Pasternack RF, Huber PR, Boyd P et al (1972) On the aggregation of meso-substituted water-soluble porphyrins. J Am Chem Soc 94(13):4511–4517PubMedCrossRef
41.
Zurück zum Zitat Miller ED, Jones ML, Henry MM et al (2018) Optimization and validation of efficient models for predicting polythiophene self-assembly. Polymers 10(12) Miller ED, Jones ML, Henry MM et al (2018) Optimization and validation of efficient models for predicting polythiophene self-assembly. Polymers 10(12)
42.
Zurück zum Zitat Surin M, Sonar P, Grimsdale AC et al (2005) Supramolecular organization in fluorene/indenofluorene—oligothiophene alternating conjugated copolymers. Adv Func Mater 15(9):1426–1434CrossRef Surin M, Sonar P, Grimsdale AC et al (2005) Supramolecular organization in fluorene/indenofluorene—oligothiophene alternating conjugated copolymers. Adv Func Mater 15(9):1426–1434CrossRef
43.
Zurück zum Zitat Bjørnholm T, Hassenkam T, Greve DR et al (1999) Polythiophene Nanowires. Adv Mater 11(14):1218–1221CrossRef Bjørnholm T, Hassenkam T, Greve DR et al (1999) Polythiophene Nanowires. Adv Mater 11(14):1218–1221CrossRef
44.
Zurück zum Zitat De Luca G, Liscio A, Maccagnani P et al (2007) Nucleation-governed reversible self-assembly of an organic semiconductor at surfaces: long-range mass transport forming giant functional fibers. Adv Func Mater 17(18):3791–3798CrossRef De Luca G, Liscio A, Maccagnani P et al (2007) Nucleation-governed reversible self-assembly of an organic semiconductor at surfaces: long-range mass transport forming giant functional fibers. Adv Func Mater 17(18):3791–3798CrossRef
45.
Zurück zum Zitat Chetia M, Debnath S, Chowdhury S et al (2020) Self-assembly and multifunctionality of peptide organogels: oil spill recovery, dye absorption and synthesis of conducting biomaterials. RSC Adv 10(9):5220–5233PubMedCrossRefPubMedCentral Chetia M, Debnath S, Chowdhury S et al (2020) Self-assembly and multifunctionality of peptide organogels: oil spill recovery, dye absorption and synthesis of conducting biomaterials. RSC Adv 10(9):5220–5233PubMedCrossRefPubMedCentral
46.
Zurück zum Zitat Brunsveld L, Vekemans JAJM, Hirschberg JHKK et al (2002) Hierarchical formation of helical supramolecular polymers via stacking of hydrogen-bonded pairs in water. Proc Natl Acad Sci 99(8):4977–4982PubMedCrossRefPubMedCentral Brunsveld L, Vekemans JAJM, Hirschberg JHKK et al (2002) Hierarchical formation of helical supramolecular polymers via stacking of hydrogen-bonded pairs in water. Proc Natl Acad Sci 99(8):4977–4982PubMedCrossRefPubMedCentral
47.
Zurück zum Zitat Hirschberg JH, Brunsveld L, Ramzi A et al (2000) Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407(6801):167–170PubMedCrossRef Hirschberg JH, Brunsveld L, Ramzi A et al (2000) Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407(6801):167–170PubMedCrossRef
48.
Zurück zum Zitat Terashima T, Mes T, de Greef TFA et al (2011) Single-chain folding of polymers for catalytic systems in water. J Am Chem Soc 133(13):4742–4745PubMedCrossRef Terashima T, Mes T, de Greef TFA et al (2011) Single-chain folding of polymers for catalytic systems in water. J Am Chem Soc 133(13):4742–4745PubMedCrossRef
49.
Zurück zum Zitat George SJ, Ajayaghosh A, Jonkheijm P et al (2004) Coiled-Coil gel nanostructures of Oligo(p-phenylenevinylene)s: gelation-induced helix transition in a higher-order supramolecular self-assembly of a rigidπ-conjugated system. Angew Chem 116(26):3504–3507CrossRef George SJ, Ajayaghosh A, Jonkheijm P et al (2004) Coiled-Coil gel nanostructures of Oligo(p-phenylenevinylene)s: gelation-induced helix transition in a higher-order supramolecular self-assembly of a rigidπ-conjugated system. Angew Chem 116(26):3504–3507CrossRef
50.
Zurück zum Zitat van Gorp JJ, Vekemans JAJM, Meijer EW (2002) C3-symmetrical supramolecular architectures: fibers and organic gels from discotic trisamides and trisureas. J Am Chem Soc 124(49):14759–14769PubMedCrossRef van Gorp JJ, Vekemans JAJM, Meijer EW (2002) C3-symmetrical supramolecular architectures: fibers and organic gels from discotic trisamides and trisureas. J Am Chem Soc 124(49):14759–14769PubMedCrossRef
51.
Zurück zum Zitat Li M, Zajaczkowski W, Velpula G et al (2020) Transformation from helical to layered supramolecular organization of asymmetric perylene diimides via multiple intermolecular hydrogen bonding. Chem Sci 11(19):4960–4968CrossRef Li M, Zajaczkowski W, Velpula G et al (2020) Transformation from helical to layered supramolecular organization of asymmetric perylene diimides via multiple intermolecular hydrogen bonding. Chem Sci 11(19):4960–4968CrossRef
52.
Zurück zum Zitat Kurokawa Y, Shirakawa N, Terada M et al (1980) Formation of polyelectrolyte complex and its adsorption properties. J Appl Polym Sci 25(8):1645–1653CrossRef Kurokawa Y, Shirakawa N, Terada M et al (1980) Formation of polyelectrolyte complex and its adsorption properties. J Appl Polym Sci 25(8):1645–1653CrossRef
53.
Zurück zum Zitat Biesheuvel PM, Cohen Stuart MA (2004) Electrostatic free energy of weakly charged macromolecules in solution and intermacromolecular complexes consisting of oppositely charged polymers. Langmuir 20(7):2785–2791PubMedCrossRef Biesheuvel PM, Cohen Stuart MA (2004) Electrostatic free energy of weakly charged macromolecules in solution and intermacromolecular complexes consisting of oppositely charged polymers. Langmuir 20(7):2785–2791PubMedCrossRef
54.
Zurück zum Zitat Dautzenberg H, Hartmann J, Grunewald S et al (1996) Stoichiometry and structure of polyelectrolyte complex particles in diluted solutions. Ber Bunsenges Phys Chem 100(6):1024–1032CrossRef Dautzenberg H, Hartmann J, Grunewald S et al (1996) Stoichiometry and structure of polyelectrolyte complex particles in diluted solutions. Ber Bunsenges Phys Chem 100(6):1024–1032CrossRef
55.
Zurück zum Zitat Starchenko V, Müller M, Lebovka N (2012) Sizing of PDADMAC/PSS complex aggregates by polyelectrolyte and salt concentration and PSS molecular weight. J Phys Chem B 116(51):14961–14967PubMedCrossRef Starchenko V, Müller M, Lebovka N (2012) Sizing of PDADMAC/PSS complex aggregates by polyelectrolyte and salt concentration and PSS molecular weight. J Phys Chem B 116(51):14961–14967PubMedCrossRef
56.
Zurück zum Zitat Tsuchida E (1994) Formation of polyelectrolyte complexes and their structures. J Macromol Sci Part A 31(1):1–15CrossRef Tsuchida E (1994) Formation of polyelectrolyte complexes and their structures. J Macromol Sci Part A 31(1):1–15CrossRef
57.
Zurück zum Zitat Weber D, Torger B, Richter K et al (2018) Interaction of poly(l-lysine)/polysaccharide complex nanoparticles with human vascular endothelial cells. Nanomaterials 8(6):358CrossRefPubMedCentral Weber D, Torger B, Richter K et al (2018) Interaction of poly(l-lysine)/polysaccharide complex nanoparticles with human vascular endothelial cells. Nanomaterials 8(6):358CrossRefPubMedCentral
58.
Zurück zum Zitat Argelles-Monal W, Grciga M, Peniche-Covas C (1990) Study of the stoichiometric polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polym Bull 23(3):307–313CrossRef Argelles-Monal W, Grciga M, Peniche-Covas C (1990) Study of the stoichiometric polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polym Bull 23(3):307–313CrossRef
59.
Zurück zum Zitat Chavasit V, Kienzle-Sterzer C, Antonio Torres J (1988) Formation and characterization of an insoluble polyelectrolyte complex: chitosan-polyacrylic acid. Polym Bull 19(3):223–230CrossRef Chavasit V, Kienzle-Sterzer C, Antonio Torres J (1988) Formation and characterization of an insoluble polyelectrolyte complex: chitosan-polyacrylic acid. Polym Bull 19(3):223–230CrossRef
60.
Zurück zum Zitat Kawashima Y, Handa T, Kasai A et al (1985) Novel method for the preparation of controlled-release theophylline granules coated with a polyelectrolyte complex of sodium polyphosphate-chitosan. J Pharm Sci 74(3):264–268PubMedCrossRef Kawashima Y, Handa T, Kasai A et al (1985) Novel method for the preparation of controlled-release theophylline granules coated with a polyelectrolyte complex of sodium polyphosphate-chitosan. J Pharm Sci 74(3):264–268PubMedCrossRef
61.
Zurück zum Zitat Sato H, Nakajima A (1975) Formation of a polyelectrolyte complex from carboxymethyl cellulose and poly(ethylenimine). Polym J 7(2):241–247CrossRef Sato H, Nakajima A (1975) Formation of a polyelectrolyte complex from carboxymethyl cellulose and poly(ethylenimine). Polym J 7(2):241–247CrossRef
62.
Zurück zum Zitat Xu Y, Borisov OV, Ballauff M et al (2010) Manipulating the morphologies of cylindrical polyelectrolyte brushes by forming interpolyelectrolyte complexes with oppositely charged linear polyelectrolytes: an AFM study. Langmuir 26(10):6919–6926PubMedCrossRef Xu Y, Borisov OV, Ballauff M et al (2010) Manipulating the morphologies of cylindrical polyelectrolyte brushes by forming interpolyelectrolyte complexes with oppositely charged linear polyelectrolytes: an AFM study. Langmuir 26(10):6919–6926PubMedCrossRef
63.
Zurück zum Zitat Kleinen J, Klee A, Richtering W (2010) Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption. Langmuir 26(13):11258–11265PubMedCrossRef Kleinen J, Klee A, Richtering W (2010) Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption. Langmuir 26(13):11258–11265PubMedCrossRef
64.
Zurück zum Zitat Procházka K, Martin TJ, Webber SE et al (1996) Onion-Type micelles in aqueous media. Macromolecules 29(20):6526–6530CrossRef Procházka K, Martin TJ, Webber SE et al (1996) Onion-Type micelles in aqueous media. Macromolecules 29(20):6526–6530CrossRef
65.
Zurück zum Zitat Tsitsilianis C, Voulgaris D, Štěpánek M et al (2000) Polystyrene/Poly(2-vinylpyridine) heteroarm star copolymer micelles in aqueous media and onion type micelles stabilized by diblock copolymers. Langmuir 16(17):6868–6876CrossRef Tsitsilianis C, Voulgaris D, Štěpánek M et al (2000) Polystyrene/Poly(2-vinylpyridine) heteroarm star copolymer micelles in aqueous media and onion type micelles stabilized by diblock copolymers. Langmuir 16(17):6868–6876CrossRef
66.
Zurück zum Zitat van der Kooij HM, Spruijt E, Voets IK et al (2012) On the stability and morphology of complex coacervate core micelles: from spherical to wormlike micelles. Langmuir 28(40):14180–14191PubMedCrossRef van der Kooij HM, Spruijt E, Voets IK et al (2012) On the stability and morphology of complex coacervate core micelles: from spherical to wormlike micelles. Langmuir 28(40):14180–14191PubMedCrossRef
67.
Zurück zum Zitat Voets IK, de Keizer A, Cohen Stuart MA et al (2006) Core and corona structure of mixed polymeric micelles. Macromolecules 39(17):5952–5955CrossRef Voets IK, de Keizer A, Cohen Stuart MA et al (2006) Core and corona structure of mixed polymeric micelles. Macromolecules 39(17):5952–5955CrossRef
68.
Zurück zum Zitat Voets IK, de Keizer A, de Waard P et al (2006) Double-faced micelles from water-soluble polymers. Angew Chem Int Ed 45(40):6673–6676CrossRef Voets IK, de Keizer A, de Waard P et al (2006) Double-faced micelles from water-soluble polymers. Angew Chem Int Ed 45(40):6673–6676CrossRef
69.
Zurück zum Zitat Voets IK, de Keizer A, Leermakers FAM et al (2009) Electrostatic hierarchical co-assembly in aqueous solutions of two oppositely charged double hydrophilic diblock copolymers. Eur Polymer J 45(10):2913–2925CrossRef Voets IK, de Keizer A, Leermakers FAM et al (2009) Electrostatic hierarchical co-assembly in aqueous solutions of two oppositely charged double hydrophilic diblock copolymers. Eur Polymer J 45(10):2913–2925CrossRef
70.
Zurück zum Zitat Wang J, de Keizer A, Fokkink R et al (2010) Complex coacervate core micelles from iron-based coordination polymers. J Phys Chem B 114(25):8313–8319PubMedCrossRef Wang J, de Keizer A, Fokkink R et al (2010) Complex coacervate core micelles from iron-based coordination polymers. J Phys Chem B 114(25):8313–8319PubMedCrossRef
71.
Zurück zum Zitat Wang J, Sun S, Wu B et al (2019) Processable and luminescent supramolecular hydrogels from complex coacervation of polycations with lanthanide coordination polyanions. Macromolecules 52(22):8643–8650CrossRef Wang J, Sun S, Wu B et al (2019) Processable and luminescent supramolecular hydrogels from complex coacervation of polycations with lanthanide coordination polyanions. Macromolecules 52(22):8643–8650CrossRef
72.
Zurück zum Zitat Yan Y, Martens AA, Besseling NAM et al (2008) Nanoribbons self-assembled from triblock peptide polymers and coordination polymers. Angew Chem 120(22):4260–4263CrossRef Yan Y, Martens AA, Besseling NAM et al (2008) Nanoribbons self-assembled from triblock peptide polymers and coordination polymers. Angew Chem 120(22):4260–4263CrossRef
73.
Zurück zum Zitat Yan Y, de Keizer A, Cohen Stuart MA et al (2008) Stability of complex coacervate core micelles containing metal coordination polymer. J Phys Chem B 112(35):10908–10914PubMedCrossRef Yan Y, de Keizer A, Cohen Stuart MA et al (2008) Stability of complex coacervate core micelles containing metal coordination polymer. J Phys Chem B 112(35):10908–10914PubMedCrossRef
74.
Zurück zum Zitat Zhou W, Wang J, Ding P et al (2019) Functional polyion complex vesicles enabled by supramolecular reversible coordination polyelectrolytes. Angew Chem Int Ed 58(25):8494–8498CrossRef Zhou W, Wang J, Ding P et al (2019) Functional polyion complex vesicles enabled by supramolecular reversible coordination polyelectrolytes. Angew Chem Int Ed 58(25):8494–8498CrossRef
75.
Zurück zum Zitat Li G, Yang X, Wang J (2008) Raspberry-like polymer composite particles via electrostatic heterocoagulation. Colloids Surf A 322(1–3):192–198CrossRef Li G, Yang X, Wang J (2008) Raspberry-like polymer composite particles via electrostatic heterocoagulation. Colloids Surf A 322(1–3):192–198CrossRef
76.
Zurück zum Zitat Anraku Y, Kishimura A, Oba M et al (2010) Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties. J Am Chem Soc 132(5):1631–1636PubMedCrossRef Anraku Y, Kishimura A, Oba M et al (2010) Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties. J Am Chem Soc 132(5):1631–1636PubMedCrossRef
77.
Zurück zum Zitat Anraku Y, Kishimura A, Yamasaki Y et al (2013) Living unimodal growth of polyion complex vesicles via two-dimensional supramolecular polymerization. J Am Chem Soc 135(4):1423–1429PubMedCrossRef Anraku Y, Kishimura A, Yamasaki Y et al (2013) Living unimodal growth of polyion complex vesicles via two-dimensional supramolecular polymerization. J Am Chem Soc 135(4):1423–1429PubMedCrossRef
78.
Zurück zum Zitat Kishimura A, Koide A, Osada K et al (2007) Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: a physiologically available oxygen carrier. Angew Chem Int Ed 46(32):6085–6088CrossRef Kishimura A, Koide A, Osada K et al (2007) Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: a physiologically available oxygen carrier. Angew Chem Int Ed 46(32):6085–6088CrossRef
79.
Zurück zum Zitat Koide A, Kishimura A, Osada K et al (2006) Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J Am Chem Soc 128(18):5988–5989PubMedCrossRef Koide A, Kishimura A, Osada K et al (2006) Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J Am Chem Soc 128(18):5988–5989PubMedCrossRef
80.
Zurück zum Zitat Sing CE, Zwanikken JW, Olvera de la Cruz M (2014) Electrostatic control of block copolymer morphology. Nat Mater 13(7):694–698PubMedCrossRef Sing CE, Zwanikken JW, Olvera de la Cruz M (2014) Electrostatic control of block copolymer morphology. Nat Mater 13(7):694–698PubMedCrossRef
81.
Zurück zum Zitat Hollingsworth WR, Magnanelli TJ, Segura C et al (2018) Polyion charge ratio determines transition between bright and dark excitons in donor/acceptor-conjugated polyelectrolyte complexes. The Journal of Physical Chemistry C 122(39):22280–22293CrossRef Hollingsworth WR, Magnanelli TJ, Segura C et al (2018) Polyion charge ratio determines transition between bright and dark excitons in donor/acceptor-conjugated polyelectrolyte complexes. The Journal of Physical Chemistry C 122(39):22280–22293CrossRef
82.
Zurück zum Zitat Gröhn F, Klein K, Brand S (2008) Facile route to supramolecular structures: self-assembly of dendrimers and naphthalene dicarboxylic acids. Chem Eur J 14(23):6866–6869PubMedCrossRef Gröhn F, Klein K, Brand S (2008) Facile route to supramolecular structures: self-assembly of dendrimers and naphthalene dicarboxylic acids. Chem Eur J 14(23):6866–6869PubMedCrossRef
83.
Zurück zum Zitat Willerich I, Gröhn F (2008) Switchable nanoassemblies from macroions and multivalent dye counterions. Chem Eur J 14(30):9112–9116PubMedCrossRef Willerich I, Gröhn F (2008) Switchable nanoassemblies from macroions and multivalent dye counterions. Chem Eur J 14(30):9112–9116PubMedCrossRef
84.
Zurück zum Zitat Ruthard C, Maskos M, Kolb U et al (2009) Finite-Size networks from cylindrical polyelectrolyte brushes and porphyrins. Macromolecules 42(3):830–840CrossRef Ruthard C, Maskos M, Kolb U et al (2009) Finite-Size networks from cylindrical polyelectrolyte brushes and porphyrins. Macromolecules 42(3):830–840CrossRef
85.
Zurück zum Zitat Li Y, Yildiz UH, Müllen K et al (2009) Association of DNA with multivalent organic counterions: from flowers to rods and toroids. Biomacromol 10(3):530–540CrossRef Li Y, Yildiz UH, Müllen K et al (2009) Association of DNA with multivalent organic counterions: from flowers to rods and toroids. Biomacromol 10(3):530–540CrossRef
86.
Zurück zum Zitat Mariani G, Kutz A, Di Z et al (2017) Inducing Hetero-aggregation of different Azo dyes through electrostatic self-assembly. Chem Eur J 23(26):6249–6254PubMedCrossRef Mariani G, Kutz A, Di Z et al (2017) Inducing Hetero-aggregation of different Azo dyes through electrostatic self-assembly. Chem Eur J 23(26):6249–6254PubMedCrossRef
87.
Zurück zum Zitat Willerich I, Ritter H, Gröhn F (2009) Structure and thermodynamics of ionic dendrimer-dye assemblies. J Phys Chem B 113(11):3339–3354PubMedCrossRef Willerich I, Ritter H, Gröhn F (2009) Structure and thermodynamics of ionic dendrimer-dye assemblies. J Phys Chem B 113(11):3339–3354PubMedCrossRef
88.
Zurück zum Zitat Yildiz ÜH, Koynov K, Gröhn F (2009) Fluorescent nanoparticles through self-assembly of linear ionenes and pyrenetetrasulfonate. Macromol Chem Phys 210(20):1678–1690CrossRef Yildiz ÜH, Koynov K, Gröhn F (2009) Fluorescent nanoparticles through self-assembly of linear ionenes and pyrenetetrasulfonate. Macromol Chem Phys 210(20):1678–1690CrossRef
89.
Zurück zum Zitat Willerich I, Gröhn F (2010) Photoswitchable nanoassemblies by electrostatic self-assembly. Angew Chem Int Ed 49(44):8104–8108CrossRef Willerich I, Gröhn F (2010) Photoswitchable nanoassemblies by electrostatic self-assembly. Angew Chem Int Ed 49(44):8104–8108CrossRef
90.
Zurück zum Zitat Gröhn F (2010) Soft matter nanoparticles with various shapes and functionalities can form through electrostatic self-assembly. Soft Matter 6(18):4296CrossRef Gröhn F (2010) Soft matter nanoparticles with various shapes and functionalities can form through electrostatic self-assembly. Soft Matter 6(18):4296CrossRef
91.
Zurück zum Zitat Gröhn F, Klein K, Koynov K (2010) A novel type of vesicles based on Ionic and π-π Interactions. Macromol Rapid Commun 31(1):75–80PubMedCrossRef Gröhn F, Klein K, Koynov K (2010) A novel type of vesicles based on Ionic and π-π Interactions. Macromol Rapid Commun 31(1):75–80PubMedCrossRef
92.
Zurück zum Zitat Frühbeißer S, Gröhn F (2012) Catalytic activity of macroion-porphyrin nanoassemblies. J Am Chem Soc 134(35):14267–14270PubMedCrossRef Frühbeißer S, Gröhn F (2012) Catalytic activity of macroion-porphyrin nanoassemblies. J Am Chem Soc 134(35):14267–14270PubMedCrossRef
93.
Zurück zum Zitat Gröhn F (2008) Electrostatic self-assembly as route to supramolecular structures. Macromol Chem Phys 209(22):2295–2301CrossRef Gröhn F (2008) Electrostatic self-assembly as route to supramolecular structures. Macromol Chem Phys 209(22):2295–2301CrossRef
94.
Zurück zum Zitat Düring J, Hölzer A, Kolb U et al (2013) Supramolecular organic-inorganic hybrid assemblies with tunable particle size: interplay of three noncovalent interactions. Angew Chem Int Ed 52(33):8742–8745CrossRef Düring J, Hölzer A, Kolb U et al (2013) Supramolecular organic-inorganic hybrid assemblies with tunable particle size: interplay of three noncovalent interactions. Angew Chem Int Ed 52(33):8742–8745CrossRef
95.
Zurück zum Zitat Frühbeißer S, Gröhn F (2017) Porphyrin-Polyelectrolyte nanoassemblies: the role of charge and building block architecture in self-assembly. Macromol Chem Phys 218(17):1600526CrossRef Frühbeißer S, Gröhn F (2017) Porphyrin-Polyelectrolyte nanoassemblies: the role of charge and building block architecture in self-assembly. Macromol Chem Phys 218(17):1600526CrossRef
96.
Zurück zum Zitat Kutz A, Mariani G, Schweins R et al (2018) Self-assembled polyoxometalate-dendrimer structures for selective photocatalysis. Nanoscale 10(3):914–920PubMedCrossRef Kutz A, Mariani G, Schweins R et al (2018) Self-assembled polyoxometalate-dendrimer structures for selective photocatalysis. Nanoscale 10(3):914–920PubMedCrossRef
97.
Zurück zum Zitat Frühbeißer S, Fuenzalida Werner JP, Gröhn F (2018) Metalloporphyrin–polyelectrolyte assemblies in aqueous solution: Influence of the metal center and the polyelectrolyte architecture. J Polym Sci Part B: Polym Phys 56(6):484–500 Frühbeißer S, Fuenzalida Werner JP, Gröhn F (2018) Metalloporphyrin–polyelectrolyte assemblies in aqueous solution: Influence of the metal center and the polyelectrolyte architecture. J Polym Sci Part B: Polym Phys 56(6):484–500
98.
Zurück zum Zitat Krieger A, Fuenzalida Werner JP, Mariani G et al (2017) Functional supramolecular porphyrin-dendrimer assemblies for light harvesting and photocatalysis. Macromolecules 50(9):3464–3475CrossRef Krieger A, Fuenzalida Werner JP, Mariani G et al (2017) Functional supramolecular porphyrin-dendrimer assemblies for light harvesting and photocatalysis. Macromolecules 50(9):3464–3475CrossRef
99.
Zurück zum Zitat Kutz A, Gröhn F (2017) Improving photocatalytic activity: versatile polyelectrolyte—photosensitizer assemblies for methyl viologen reduction. ChemistrySelect 2(4):1504–1515CrossRef Kutz A, Gröhn F (2017) Improving photocatalytic activity: versatile polyelectrolyte—photosensitizer assemblies for methyl viologen reduction. ChemistrySelect 2(4):1504–1515CrossRef
100.
Zurück zum Zitat Mariani G, Krieger A, Moldenhauer D et al (2018) Light-Responsive shape: from micrometer-long nanocylinders to compact particles in electrostatic self-assembly. Macromo Rapid Commun 39(17):e1700860 Mariani G, Krieger A, Moldenhauer D et al (2018) Light-Responsive shape: from micrometer-long nanocylinders to compact particles in electrostatic self-assembly. Macromo Rapid Commun 39(17):e1700860
101.
Zurück zum Zitat Willerich I, Gröhn F (2011) Thermodynamics of photoresponsive polyelectrolyte-dye assemblies with irradiation wavelength triggered particle size. Macromolecules 44(11):4452–4461CrossRef Willerich I, Gröhn F (2011) Thermodynamics of photoresponsive polyelectrolyte-dye assemblies with irradiation wavelength triggered particle size. Macromolecules 44(11):4452–4461CrossRef
102.
Zurück zum Zitat Willerich I, Gröhn F (2011) Molecular structure encodes nanoscale assemblies: understanding driving forces in electrostatic self-assembly. J Am Chem Soc 133(50):20341–20356PubMedCrossRef Willerich I, Gröhn F (2011) Molecular structure encodes nanoscale assemblies: understanding driving forces in electrostatic self-assembly. J Am Chem Soc 133(50):20341–20356PubMedCrossRef
103.
Zurück zum Zitat Willerich I, Schindler T, Gröhn F (2011) Effect of polyelectrolyte architecture and size on macroion-dye assemblies. J Phys Chem B 115(32):9710–9719PubMedCrossRef Willerich I, Schindler T, Gröhn F (2011) Effect of polyelectrolyte architecture and size on macroion-dye assemblies. J Phys Chem B 115(32):9710–9719PubMedCrossRef
104.
Zurück zum Zitat Mariani G, Moldenhauer D, Schweins R et al (2016) Elucidating electrostatic self-assembly: molecular parameters as key to thermodynamics and nanoparticle shape. J Am Chem Soc 138(4):1280–1293PubMedCrossRef Mariani G, Moldenhauer D, Schweins R et al (2016) Elucidating electrostatic self-assembly: molecular parameters as key to thermodynamics and nanoparticle shape. J Am Chem Soc 138(4):1280–1293PubMedCrossRef
105.
Zurück zum Zitat Willerich I, Li Y, Gröhn F (2010) Influencing particle size and stability of ionic dendrimer−dye assemblies. J Phys Chem B 114(47):15466–15476PubMedCrossRef Willerich I, Li Y, Gröhn F (2010) Influencing particle size and stability of ionic dendrimer−dye assemblies. J Phys Chem B 114(47):15466–15476PubMedCrossRef
106.
Zurück zum Zitat Mariani G, Schweins R, Gröhn F (2016) Structure tuning of electrostatically self-assembled nanoparticles through pH. J Phys Chem B 120(7):1380–1389PubMedCrossRef Mariani G, Schweins R, Gröhn F (2016) Structure tuning of electrostatically self-assembled nanoparticles through pH. J Phys Chem B 120(7):1380–1389PubMedCrossRef
107.
Zurück zum Zitat Mariani G, Schweins R, Gröhn F (2017) Structure tuning of electrostatically self-assembled nanoparticles through pH: the role of charge ratio. Macromol Chem Phys 218(24):1700191CrossRef Mariani G, Schweins R, Gröhn F (2017) Structure tuning of electrostatically self-assembled nanoparticles through pH: the role of charge ratio. Macromol Chem Phys 218(24):1700191CrossRef
108.
Zurück zum Zitat Mariani G, Schweins R, Gröhn F (2016) Electrostatic self-assembly of dendrimer macroions and multivalent dye counterions: the role of solution ionic strength. Macromolecules 49(22):8661–8671CrossRef Mariani G, Schweins R, Gröhn F (2016) Electrostatic self-assembly of dendrimer macroions and multivalent dye counterions: the role of solution ionic strength. Macromolecules 49(22):8661–8671CrossRef
109.
Zurück zum Zitat Kutz A, Alex W, Krieger A et al (2017) Hydrogen-Bonded polymer-porphyrin assemblies in water: supramolecular structures for light energy conversion. Macrom Rapid Commun 38(17) Kutz A, Alex W, Krieger A et al (2017) Hydrogen-Bonded polymer-porphyrin assemblies in water: supramolecular structures for light energy conversion. Macrom Rapid Commun 38(17)
110.
Zurück zum Zitat Srebnik S, Douglas JF (2011) Self-assembly of charged particles on nanotubes and the emergence of particle rings, chains, ribbons and chiral sheets. Soft Matter 7(15):6897CrossRef Srebnik S, Douglas JF (2011) Self-assembly of charged particles on nanotubes and the emergence of particle rings, chains, ribbons and chiral sheets. Soft Matter 7(15):6897CrossRef
111.
Zurück zum Zitat Damasceno PF, Engel M, Glotzer SC (2012) Predictive self-assembly of polyhedra into complex structures. Science 337(6093):453–457PubMedCrossRef Damasceno PF, Engel M, Glotzer SC (2012) Predictive self-assembly of polyhedra into complex structures. Science 337(6093):453–457PubMedCrossRef
112.
Zurück zum Zitat Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6(8):557–562PubMedCrossRef Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6(8):557–562PubMedCrossRef
113.
Zurück zum Zitat Ruthard C, Maskos M, Kolb U et al (2011) Polystyrene sulfonate-porphyrin assemblies: influence of polyelectrolyte and porphyrin structure. J Phys Chem B 115(19):5716–5729PubMedCrossRef Ruthard C, Maskos M, Kolb U et al (2011) Polystyrene sulfonate-porphyrin assemblies: influence of polyelectrolyte and porphyrin structure. J Phys Chem B 115(19):5716–5729PubMedCrossRef
114.
Zurück zum Zitat Henle ML, Pincus PA (2005) Equilibrium bundle size of rodlike polyelectrolytes with counterion-induced attractive interactions. Phys Rev E 71(6):60801CrossRef Henle ML, Pincus PA (2005) Equilibrium bundle size of rodlike polyelectrolytes with counterion-induced attractive interactions. Phys Rev E 71(6):60801CrossRef
115.
Zurück zum Zitat Kovaric BC, Kokona B, Schwab AD et al (2006) Self-Assembly of peptide porphyrin complexes: toward the development of smart biomaterials. J Am Chem Soc 128(13):4166–4167PubMedCrossRef Kovaric BC, Kokona B, Schwab AD et al (2006) Self-Assembly of peptide porphyrin complexes: toward the development of smart biomaterials. J Am Chem Soc 128(13):4166–4167PubMedCrossRef
116.
Zurück zum Zitat Kuciauskas D, Caputo GA (2009) Self-assembly of peptide−porphyrin complexes leads to pH-dependent excitonic coupling. J Phys Chem B 113(43):14439–14447PubMedCrossRef Kuciauskas D, Caputo GA (2009) Self-assembly of peptide−porphyrin complexes leads to pH-dependent excitonic coupling. J Phys Chem B 113(43):14439–14447PubMedCrossRef
117.
Zurück zum Zitat Liu Y, Jin J, Deng H et al (2016) Protein-Framed multi-porphyrin micelles for a hybrid natural-artificial light-harvesting nanosystem. Angew Chem Int Ed 55(28):7952–7957CrossRef Liu Y, Jin J, Deng H et al (2016) Protein-Framed multi-porphyrin micelles for a hybrid natural-artificial light-harvesting nanosystem. Angew Chem Int Ed 55(28):7952–7957CrossRef
118.
Zurück zum Zitat Segura CJ, Lucero M, Ayzner AL (2019) Disassembly of an interconjugated polyelectrolyte complex using ionic surfactants. ACS Appl Polym Mater 1(5):1034–1044CrossRef Segura CJ, Lucero M, Ayzner AL (2019) Disassembly of an interconjugated polyelectrolyte complex using ionic surfactants. ACS Appl Polym Mater 1(5):1034–1044CrossRef
119.
Zurück zum Zitat Kistler ML, Patel KG, Liu T (2009) Accurately tuning the charge on giant polyoxometalate type keplerates through stoichiometric interaction with cationic surfactants. Langmuir 25(13):7328–7334PubMedCrossRef Kistler ML, Patel KG, Liu T (2009) Accurately tuning the charge on giant polyoxometalate type keplerates through stoichiometric interaction with cationic surfactants. Langmuir 25(13):7328–7334PubMedCrossRef
120.
Zurück zum Zitat Kutz A, Mariani G, Gröhn F (2016) Ionic dye–surfactant nanoassemblies: interplay of electrostatics, hydrophobic effect, and π–π stacking. Colloid Polym Sci 294(3):591–606CrossRef Kutz A, Mariani G, Gröhn F (2016) Ionic dye–surfactant nanoassemblies: interplay of electrostatics, hydrophobic effect, and π–π stacking. Colloid Polym Sci 294(3):591–606CrossRef
121.
Zurück zum Zitat Li H, Sun H, Qi W et al (2007) Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates. Angew Chem Int Ed 46(8):1300–1303CrossRef Li H, Sun H, Qi W et al (2007) Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates. Angew Chem Int Ed 46(8):1300–1303CrossRef
122.
123.
Zurück zum Zitat Andrade SM, Costa SMB (2002) Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophys J 82(3):1607–1619PubMedCrossRefPubMedCentral Andrade SM, Costa SMB (2002) Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophys J 82(3):1607–1619PubMedCrossRefPubMedCentral
124.
Zurück zum Zitat Ruthard C, Schmidt M, Gröhn F (2011) Porphyrin-polymer networks, worms, and nanorods: pH-triggerable hierarchical self-assembly. Macromol Rapid Commun 32(9–10):706–711PubMedCrossRef Ruthard C, Schmidt M, Gröhn F (2011) Porphyrin-polymer networks, worms, and nanorods: pH-triggerable hierarchical self-assembly. Macromol Rapid Commun 32(9–10):706–711PubMedCrossRef
125.
Zurück zum Zitat Helseth LE (2012) Pyranine-induced self-assembly of colloidal structures using poly(allylamine-hydrochloride). J Colloid Interface Sci 375(1):23–29PubMedCrossRef Helseth LE (2012) Pyranine-induced self-assembly of colloidal structures using poly(allylamine-hydrochloride). J Colloid Interface Sci 375(1):23–29PubMedCrossRef
126.
Zurück zum Zitat Goodman M, Falxa ML (1967) Conformational aspects of polypeptide structure. 23. Photoisomerization of azoaromatic polypeptides. J Am Chem Soc 89(15):3863–3867 Goodman M, Falxa ML (1967) Conformational aspects of polypeptide structure. 23. Photoisomerization of azoaromatic polypeptides. J Am Chem Soc 89(15):3863–3867
127.
Zurück zum Zitat Koga T, Ushirogochi M, Higashi N (2007) Regulation of self-assembling process of a cationic β-sheet peptide by photoisomerization of an anionic azobenzene derivative. Polym J 39(1):16–17CrossRef Koga T, Ushirogochi M, Higashi N (2007) Regulation of self-assembling process of a cationic β-sheet peptide by photoisomerization of an anionic azobenzene derivative. Polym J 39(1):16–17CrossRef
128.
Zurück zum Zitat Moldenhauer D, Gröhn F (2013) Nanoassemblies with light-responsive size and density from linear flexible polyelectrolytes. J Polym Sci Part B: Polym Phys 51(10):802–816 Moldenhauer D, Gröhn F (2013) Nanoassemblies with light-responsive size and density from linear flexible polyelectrolytes. J Polym Sci Part B: Polym Phys 51(10):802–816
129.
Zurück zum Zitat Guo Y, Gong Y, Yu Z et al (2016) Rational design of photo-responsive supramolecular nanostructures based on an azobenzene-derived surfactant-encapsulated polyoxometalate complex. RSC Adv 6(18):14468–14473CrossRef Guo Y, Gong Y, Yu Z et al (2016) Rational design of photo-responsive supramolecular nanostructures based on an azobenzene-derived surfactant-encapsulated polyoxometalate complex. RSC Adv 6(18):14468–14473CrossRef
130.
Zurück zum Zitat Xie X, Wang L, Liu X et al (2020) Light-powered and transient peptide two-dimensional assembly driven by trans-to-cis isomerization of azobenzene side chains. Chem Commun 56(12):1867–1870CrossRef Xie X, Wang L, Liu X et al (2020) Light-powered and transient peptide two-dimensional assembly driven by trans-to-cis isomerization of azobenzene side chains. Chem Commun 56(12):1867–1870CrossRef
131.
Zurück zum Zitat Markiewicz G, Pakulski D, Galanti A et al (2017) Photoisomerisation and light-induced morphological switching of a polyoxometalate-azobenzene hybrid. Chem Commun 53(53):7278–7281CrossRef Markiewicz G, Pakulski D, Galanti A et al (2017) Photoisomerisation and light-induced morphological switching of a polyoxometalate-azobenzene hybrid. Chem Commun 53(53):7278–7281CrossRef
132.
Zurück zum Zitat Carl N, Müller W, Schweins R et al (2020) Controlling self-assembly with light and temperature. Langmuir 36(1):223–231PubMedCrossRef Carl N, Müller W, Schweins R et al (2020) Controlling self-assembly with light and temperature. Langmuir 36(1):223–231PubMedCrossRef
133.
Zurück zum Zitat Moldenhauer D, Fuenzalida Werner JP, Strassert CA et al (2019) Light-Responsive size of self-assembled spiropyran-lysozyme nanoparticles with enzymatic function. Biomacromol 20(2):979–991CrossRef Moldenhauer D, Fuenzalida Werner JP, Strassert CA et al (2019) Light-Responsive size of self-assembled spiropyran-lysozyme nanoparticles with enzymatic function. Biomacromol 20(2):979–991CrossRef
134.
Zurück zum Zitat Cardenas-Daw C, Gröhn F (2015) Photo-Induced assembly of nanostructures triggered by short-lived proton transfers in the excited-state. J Am Chem Soc 137(27):8660–8663PubMedCrossRef Cardenas-Daw C, Gröhn F (2015) Photo-Induced assembly of nanostructures triggered by short-lived proton transfers in the excited-state. J Am Chem Soc 137(27):8660–8663PubMedCrossRef
135.
Zurück zum Zitat Agmon N, Rettig W, Groth C (2002) Electronic determinants of photoacidity in cyanonaphthols. J Am Chem Soc 124(6):1089–1096PubMedCrossRef Agmon N, Rettig W, Groth C (2002) Electronic determinants of photoacidity in cyanonaphthols. J Am Chem Soc 124(6):1089–1096PubMedCrossRef
136.
Zurück zum Zitat Zika A, Bernhardt S, Gröhn F (2020) Photoresponsive photoacid-macroion nano-assemblies. Polymers 12(8) Zika A, Bernhardt S, Gröhn F (2020) Photoresponsive photoacid-macroion nano-assemblies. Polymers 12(8)
137.
138.
Zurück zum Zitat Feng L, Xu L, Dong S et al (2016) Thermo-reversible capture and release of DNA by zwitterionic surfactants. Soft Matter 12(36):7495–7504PubMedCrossRef Feng L, Xu L, Dong S et al (2016) Thermo-reversible capture and release of DNA by zwitterionic surfactants. Soft Matter 12(36):7495–7504PubMedCrossRef
139.
Zurück zum Zitat Liu F, Wang J, Cao Q et al (2015) One-step synthesis of magnetic hollow mesoporous silica (MHMS) nanospheres for drug delivery nanosystems via electrostatic self-assembly templated approach. Chem Commun 51(12):2357–2360CrossRef Liu F, Wang J, Cao Q et al (2015) One-step synthesis of magnetic hollow mesoporous silica (MHMS) nanospheres for drug delivery nanosystems via electrostatic self-assembly templated approach. Chem Commun 51(12):2357–2360CrossRef
140.
Zurück zum Zitat Liu H, Wang L, Wang X et al (2019) Vesicle transition of catanionic redox-switchable surfactants controlled by DNA with different chain lengths. J Colloid Interface Sci 549:89–97PubMedCrossRef Liu H, Wang L, Wang X et al (2019) Vesicle transition of catanionic redox-switchable surfactants controlled by DNA with different chain lengths. J Colloid Interface Sci 549:89–97PubMedCrossRef
141.
Zurück zum Zitat Guo Y, Gong Y, Gao Y et al (2016b) Multi-stimuli responsive supramolecular structures based on azobenzene surfactant-encapsulated polyoxometalate. Langmuir 32(36):9293–9300 Guo Y, Gong Y, Gao Y et al (2016b) Multi-stimuli responsive supramolecular structures based on azobenzene surfactant-encapsulated polyoxometalate. Langmuir 32(36):9293–9300
Metadaten
Titel
Nano-Objects by Spontaneous Electrostatic Self-Assembly in Aqueous Solution
verfasst von
Alexander Zika
Anja Krieger
Franziska Gröhn
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-00657-9_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.