Skip to main content
Erschienen in:
Buchtitelbild

2023 | OriginalPaper | Buchkapitel

IoT Network Administration by Intelligent Decision Support Based on Combined Neural Networks

verfasst von : Igor Kotenko, Igor Saenko, Fadey Skorik

Erschienen in: Security, Trust and Privacy Models, and Architectures in IoT Environments

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At present, IoT networks have penetrated almost all spheres of life in modern society. They have a fairly wide arsenal of various network devices and also have a fairly developed and branched structure. However, the high dynamics of the behavior of IoT networks, coupled with the large volumes of information processed in them and the transmitted traffic, cause certain difficulties in solving the problems of administration of computer networks. It is becoming increasingly difficult for an IoT network administrator to identify and resolve abnormal situations in a timely manner. It is possible to solve the problem of effective administration of a large and complex IoT networks if we introduce a specialized intelligent decision support system for the administrator into the arsenal of network administration tools. The paper discusses a variant of the implementation of the analytical block for intelligent decision support of IoT network administrators, built on the basis of artificial neural networks. The paper outlines the structure of a combined neural network, focused on solving the problem of assessing the state of computer network elements. Three training methods are considered: stochastic gradient descent, the adaptive learning rate method, and the adaptive inertia method. The experimental results have shown a sufficiently high accuracy of the proposed solution, good adaptability, and the possibility of its application in a wide range of network configurations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz. A survey on 5g networks for the internet of things: Communication technologies and challenges. IEEE access, 6:3619–3647, 2017. G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz. A survey on 5g networks for the internet of things: Communication technologies and challenges. IEEE access, 6:3619–3647, 2017.
3.
Zurück zum Zitat S. Amari. A theory of adaptive pattern classifiers. IEEE Transactions on Electronic Computers, (3):299–307, 1967.CrossRefMATH S. Amari. A theory of adaptive pattern classifiers. IEEE Transactions on Electronic Computers, (3):299–307, 1967.CrossRefMATH
4.
Zurück zum Zitat A. Azruddin, R. Gobithasan, B. Rahmat, S. Azman, and R. Sureswaran. A hybrid rule based fuzzy-neural expert system for passive network monitoring. In Proc. of the Arab Conf. on Information Technology ACIT, pages 746–752, 2002. A. Azruddin, R. Gobithasan, B. Rahmat, S. Azman, and R. Sureswaran. A hybrid rule based fuzzy-neural expert system for passive network monitoring. In Proc. of the Arab Conf. on Information Technology ACIT, pages 746–752, 2002.
5.
Zurück zum Zitat S. Behal, K. Kumar, and M. Sachdeva. D-face: An anomaly based distributed approach for early detection of ddos attacks and flash events. Journal of Network and Computer Applications, 111:49–63, 2018.CrossRef S. Behal, K. Kumar, and M. Sachdeva. D-face: An anomaly based distributed approach for early detection of ddos attacks and flash events. Journal of Network and Computer Applications, 111:49–63, 2018.CrossRef
6.
Zurück zum Zitat A. Branitskiy and I. Kotenko. Hybridization of computational intelligence methods for attack detection in computer networks. Journal of Computational Science, 23:145–156, 2017.MathSciNetCrossRef A. Branitskiy and I. Kotenko. Hybridization of computational intelligence methods for attack detection in computer networks. Journal of Computational Science, 23:145–156, 2017.MathSciNetCrossRef
7.
Zurück zum Zitat A. A. Brincat, F. Pacifici, S. Martinaglia, and F. Mazzola. The internet of things for intelligent transportation systems in real smart cities scenarios. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pages 128–132. IEEE, 2019. A. A. Brincat, F. Pacifici, S. Martinaglia, and F. Mazzola. The internet of things for intelligent transportation systems in real smart cities scenarios. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pages 128–132. IEEE, 2019.
8.
Zurück zum Zitat D. Bukhanov and V. Polyakov. An approach to improve the architecture of art-2 artificial neural network based on multi-level memory. Fuzzy Technol. Ind. FTI, 2018:235–242, 2018. D. Bukhanov and V. Polyakov. An approach to improve the architecture of art-2 artificial neural network based on multi-level memory. Fuzzy Technol. Ind. FTI, 2018:235–242, 2018.
9.
Zurück zum Zitat Y. Chen, S. Kak, and L. Wang. Hybrid neural network architecture for on-line learning. Intelligent Information Management, page 253, 2010. Y. Chen, S. Kak, and L. Wang. Hybrid neural network architecture for on-line learning. Intelligent Information Management, page 253, 2010.
10.
Zurück zum Zitat O. Friha, M. A. Ferrag, L. Shu, L. A. Maglaras, and X. Wang. Internet of things for the future of smart agriculture: A comprehensive survey of emerging technologies. IEEE CAA J. Autom. Sinica, 8(4):718–752, 2021.CrossRef O. Friha, M. A. Ferrag, L. Shu, L. A. Maglaras, and X. Wang. Internet of things for the future of smart agriculture: A comprehensive survey of emerging technologies. IEEE CAA J. Autom. Sinica, 8(4):718–752, 2021.CrossRef
11.
Zurück zum Zitat M. Ghofrani, R. Azimi, F. Najafabadi, and N. Myers. A new day-ahead hourly electricity price forecasting framework. In 2017 North American Power Symposium (NAPS), pages 1–6. IEEE, 2017. M. Ghofrani, R. Azimi, F. Najafabadi, and N. Myers. A new day-ahead hourly electricity price forecasting framework. In 2017 North American Power Symposium (NAPS), pages 1–6. IEEE, 2017.
12.
Zurück zum Zitat W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash. An in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined security. IEEE Internet of Things Journal, 7(10):10250–10276, 2020.CrossRef W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash. An in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined security. IEEE Internet of Things Journal, 7(10):10250–10276, 2020.CrossRef
13.
Zurück zum Zitat K. Ishida. Iot application in sports to support skill acquisition and improvement. In 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA), pages 184–189. IEEE, 2019. K. Ishida. Iot application in sports to support skill acquisition and improvement. In 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA), pages 184–189. IEEE, 2019.
14.
Zurück zum Zitat A. Karmakar, N. Dey, T. Baral, M. Chowdhury, and M. Rehan. Industrial internet of things: a review. In 2019 international conference on opto-electronics and applied optics (optronix), pages 1–6. IEEE, 2019. A. Karmakar, N. Dey, T. Baral, M. Chowdhury, and M. Rehan. Industrial internet of things: a review. In 2019 international conference on opto-electronics and applied optics (optronix), pages 1–6. IEEE, 2019.
15.
Zurück zum Zitat N. Kasabov and H. N. Hamed. Quantum-inspired particle swarm optimisation for integrated feature and parameter optimisation of evolving spiking neural networks. International Journal of Artificial Intelligence, 7(A11):114–124, 2011. N. Kasabov and H. N. Hamed. Quantum-inspired particle swarm optimisation for integrated feature and parameter optimisation of evolving spiking neural networks. International Journal of Artificial Intelligence, 7(A11):114–124, 2011.
16.
Zurück zum Zitat O. Khristodulo, A. Makhmutov, and T. Sazonova. Use algorithm based at hamming neural network method for natural objects classification. Procedia Computer Science, 103:388–395, 2017.CrossRef O. Khristodulo, A. Makhmutov, and T. Sazonova. Use algorithm based at hamming neural network method for natural objects classification. Procedia Computer Science, 103:388–395, 2017.CrossRef
17.
Zurück zum Zitat I. Kotenko. Multi-agent modelling and simulation of cyber-attacks and cyber-defense for homeland security. In 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pages 614–619. IEEE, 2007. I. Kotenko. Multi-agent modelling and simulation of cyber-attacks and cyber-defense for homeland security. In 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pages 614–619. IEEE, 2007.
18.
Zurück zum Zitat I. Kotenko, A. Konovalov, and A. Shorov. Agent-based simulation of cooperative defence against botnets. Concurrency and Computation: Practice and Experience, 24(6):573–588, 2012.CrossRefMATH I. Kotenko, A. Konovalov, and A. Shorov. Agent-based simulation of cooperative defence against botnets. Concurrency and Computation: Practice and Experience, 24(6):573–588, 2012.CrossRefMATH
19.
Zurück zum Zitat I. Kotenko, O. Polubelova, and I. Saenko. The ontological approach for siem data repository implementation. In 2012 IEEE International Conference on Green Computing and Communications, pages 761–766. IEEE, 2012. I. Kotenko, O. Polubelova, and I. Saenko. The ontological approach for siem data repository implementation. In 2012 IEEE International Conference on Green Computing and Communications, pages 761–766. IEEE, 2012.
20.
Zurück zum Zitat I. Kotenko, I. Saenko, and F. Skorik. Intelligent support for network administrator decisions based on combined neural networks. In 13th International Conference on Security of Information and Networks, pages 1–8, 2020. I. Kotenko, I. Saenko, and F. Skorik. Intelligent support for network administrator decisions based on combined neural networks. In 13th International Conference on Security of Information and Networks, pages 1–8, 2020.
21.
Zurück zum Zitat I. Kotenko, I. Saenko, F. Skorik, and S. Bushuev. Neural network approach to forecast the state of the internet of things elements. In 2015 XVIII international conference on soft computing and measurements (SCM), pages 133–135. IEEE, 2015. I. Kotenko, I. Saenko, F. Skorik, and S. Bushuev. Neural network approach to forecast the state of the internet of things elements. In 2015 XVIII international conference on soft computing and measurements (SCM), pages 133–135. IEEE, 2015.
22.
Zurück zum Zitat I. Kotenko and A. Ulanov. Simulation of internet ddos attacks and defense. In International Conference on Information Security, pages 327–342. Springer, 2006. I. Kotenko and A. Ulanov. Simulation of internet ddos attacks and defense. In International Conference on Information Security, pages 327–342. Springer, 2006.
23.
Zurück zum Zitat S. D. Kumar et al. Design and development of iot-based robot. In 2020 International Conference for Emerging Technology (INCET), pages 1–4. IEEE, 2020. S. D. Kumar et al. Design and development of iot-based robot. In 2020 International Conference for Emerging Technology (INCET), pages 1–4. IEEE, 2020.
24.
Zurück zum Zitat I. Kurochkina, I. Kalinin, L. Mamatova, and E. Shuvalova. Neural networks method in modeling of the financial company’s performance. Statistics and Economics, (5):33–41, 2017.CrossRef I. Kurochkina, I. Kalinin, L. Mamatova, and E. Shuvalova. Neural networks method in modeling of the financial company’s performance. Statistics and Economics, (5):33–41, 2017.CrossRef
25.
Zurück zum Zitat C. K. Lee, C. L. Yeung, and M. N. Cheng. Research on iot based cyber physical system for industrial big data analytics. In 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pages 1855–1859. IEEE, 2015. C. K. Lee, C. L. Yeung, and M. N. Cheng. Research on iot based cyber physical system for industrial big data analytics. In 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pages 1855–1859. IEEE, 2015.
26.
Zurück zum Zitat A. Mishra, Z. Zaheeruddin, et al. Design of hybrid fuzzy neural network for function approximation. Journal of Intelligent Learning Systems and Applications, 2(02):97, 2010. A. Mishra, Z. Zaheeruddin, et al. Design of hybrid fuzzy neural network for function approximation. Journal of Intelligent Learning Systems and Applications, 2(02):97, 2010.
27.
Zurück zum Zitat S. J. Moore, C. D. Nugent, S. Zhang, and I. Cleland. Iot reliability: a review leading to 5 key research directions. CCF Transactions on Pervasive Computing and Interaction, 2(3):147–163, 2020.CrossRef S. J. Moore, C. D. Nugent, S. Zhang, and I. Cleland. Iot reliability: a review leading to 5 key research directions. CCF Transactions on Pervasive Computing and Interaction, 2(3):147–163, 2020.CrossRef
28.
Zurück zum Zitat C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context aware computing for the internet of things: A survey. IEEE communications surveys & tutorials, 16(1):414–454, 2013.CrossRef C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context aware computing for the internet of things: A survey. IEEE communications surveys & tutorials, 16(1):414–454, 2013.CrossRef
29.
Zurück zum Zitat E. Popova and V. Leonenko. Predicting user reactions in social networks using machine learning methods. Bulletin of Information Technologies, Mechanics and Optics, 20(1):118–124, 2020.CrossRef E. Popova and V. Leonenko. Predicting user reactions in social networks using machine learning methods. Bulletin of Information Technologies, Mechanics and Optics, 20(1):118–124, 2020.CrossRef
30.
Zurück zum Zitat S. M. Rao. Application of modified gram-schmidt procedure to obtain induced currents on a section of a large body. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pages 2008–2009. IEEE, 2014. S. M. Rao. Application of modified gram-schmidt procedure to obtain induced currents on a section of a large body. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pages 2008–2009. IEEE, 2014.
31.
Zurück zum Zitat A. K. Ray and A. Bagwari. Iot based smart home: Security aspects and security architecture. In 2020 IEEE 9th international conference on communication systems and network technologies (CSNT), pages 218–222. IEEE, 2020. A. K. Ray and A. Bagwari. Iot based smart home: Security aspects and security architecture. In 2020 IEEE 9th international conference on communication systems and network technologies (CSNT), pages 218–222. IEEE, 2020.
32.
Zurück zum Zitat S. Rizvi, A. Kurtz, J. Pfeffer, and M. Rizvi. Securing the internet of things (iot): A security taxonomy for IoT. In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pages 163–168. IEEE, 2018. S. Rizvi, A. Kurtz, J. Pfeffer, and M. Rizvi. Securing the internet of things (iot): A security taxonomy for IoT. In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pages 163–168. IEEE, 2018.
33.
Zurück zum Zitat I. Saenko, F. Skorik, and I. Kotenko. Application of hybrid neural networks for monitoring and forecasting computer networks states. In International Symposium on Neural Networks, pages 521–530. Springer, 2016. I. Saenko, F. Skorik, and I. Kotenko. Application of hybrid neural networks for monitoring and forecasting computer networks states. In International Symposium on Neural Networks, pages 521–530. Springer, 2016.
34.
Zurück zum Zitat M. U. Saleem, M. R. Usman, and M. Shakir. Design, implementation, and deployment of an iot based smart energy management system. IEEE Access, 9:59649–59664, 2021.CrossRef M. U. Saleem, M. R. Usman, and M. Shakir. Design, implementation, and deployment of an iot based smart energy management system. IEEE Access, 9:59649–59664, 2021.CrossRef
35.
Zurück zum Zitat N. Shahid and S. Aneja. Internet of things: Vision, application areas and research challenges. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pages 583–587. IEEE, 2017. N. Shahid and S. Aneja. Internet of things: Vision, application areas and research challenges. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pages 583–587. IEEE, 2017.
36.
Zurück zum Zitat L. C. Silva, E. F. Simas Filho, M. C. Albuquerque, I. C. Silva, and C. T. Farias. Embedded decision support system for ultrasound nondestructive evaluation based on extreme learning machines. Computers & Electrical Engineering, 90:106891, 2021.CrossRef L. C. Silva, E. F. Simas Filho, M. C. Albuquerque, I. C. Silva, and C. T. Farias. Embedded decision support system for ultrasound nondestructive evaluation based on extreme learning machines. Computers & Electrical Engineering, 90:106891, 2021.CrossRef
37.
Zurück zum Zitat C. K. Simon and I. V. Sochenkov. Evaluating host-based intrusion detection on the adfa-wd and ADFA-WD: SAA datasets. Semanticscholar. org, 2021. C. K. Simon and I. V. Sochenkov. Evaluating host-based intrusion detection on the adfa-wd and ADFA-WD: SAA datasets. Semanticscholar. org, 2021.
38.
Zurück zum Zitat S. Sinche, D. Raposo, N. Armando, A. Rodrigues, F. Boavida, V. Pereira, and J. S. Silva. A survey of iot management protocols and frameworks. IEEE Communications Surveys & Tutorials, 22(2):1168–1190, 2019.CrossRef S. Sinche, D. Raposo, N. Armando, A. Rodrigues, F. Boavida, V. Pereira, and J. S. Silva. A survey of iot management protocols and frameworks. IEEE Communications Surveys & Tutorials, 22(2):1168–1190, 2019.CrossRef
39.
Zurück zum Zitat S. Sinche, J. S. Silva, D. Raposo, A. Rodrigues, V. Pereira, and F. Boavida. Towards effective iot management. In 2018 IEEE SENSORS, pages 1–4. IEEE, 2018. S. Sinche, J. S. Silva, D. Raposo, A. Rodrigues, V. Pereira, and F. Boavida. Towards effective iot management. In 2018 IEEE SENSORS, pages 1–4. IEEE, 2018.
40.
Zurück zum Zitat L. G. M. Souza and G. A. Barreto. Nonlinear system identification using local arx models based on the self-organizing map. Learning and nonlinear models-revista da sociedade brasileira de redes neurais (SBRN), 4(2):112–123, 2006.CrossRef L. G. M. Souza and G. A. Barreto. Nonlinear system identification using local arx models based on the self-organizing map. Learning and nonlinear models-revista da sociedade brasileira de redes neurais (SBRN), 4(2):112–123, 2006.CrossRef
41.
Zurück zum Zitat S. Vishnu, S. J. Ramson, and R. Jegan. Internet of medical things (IoMT)-an overview. In 2020 5th international conference on devices, circuits and systems (ICDCS), pages 101–104. IEEE, 2020. S. Vishnu, S. J. Ramson, and R. Jegan. Internet of medical things (IoMT)-an overview. In 2020 5th international conference on devices, circuits and systems (ICDCS), pages 101–104. IEEE, 2020.
42.
Zurück zum Zitat L. Wan, L. Zhu, and R. Fergus. A hybrid neural network-latent topic model. In Artificial Intelligence and Statistics, pages 1287–1294. PMLR, 2012. L. Wan, L. Zhu, and R. Fergus. A hybrid neural network-latent topic model. In Artificial Intelligence and Statistics, pages 1287–1294. PMLR, 2012.
43.
Zurück zum Zitat J. Whitter-Jones. Security review on the internet of things. In 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), pages 163–168. IEEE, 2018. J. Whitter-Jones. Security review on the internet of things. In 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), pages 163–168. IEEE, 2018.
44.
Zurück zum Zitat M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012. M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.
Metadaten
Titel
IoT Network Administration by Intelligent Decision Support Based on Combined Neural Networks
verfasst von
Igor Kotenko
Igor Saenko
Fadey Skorik
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-21940-5_1

Neuer Inhalt