Skip to main content
Erschienen in: Wireless Networks 4/2016

01.05.2016

Joint physical and link layer error control analysis for nanonetworks in the Terahertz band

verfasst von: N. Akkari, J. M. Jornet, P. Wang, E. Fadel, L. Elrefaei, M. G. A. Malik, S. Almasri, I. F. Akyildiz

Erschienen in: Wireless Networks | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanonetworks consist of nano-sized communicating devices which are able to perform simple tasks at the nanoscale. The limited capabilities of individual nanomachines and the Terahertz (THz) band channel behavior lead to error-prone wireless links. In this paper, a cross-layer analysis of error-control strategies for nanonetworks in the THz band is presented. A mathematical framework is developed and used to analyze the tradeoffs between Bit Error Rate, Packet Error Rate, energy consumption and latency, for five different error-control strategies, namely, Automatic Repeat reQuest (ARQ), Forward Error Correction (FEC), two types of Error Prevention Codes (EPC) and a hybrid EPC. The cross-layer effects between the physical and the link layers as well as the impact of the nanomachine capabilities in both layers are taken into account. At the physical layer, nanomachines are considered to communicate by following a time-spread on-off keying modulation based on the transmission of femtosecond-long pulses. At the link layer, nanomachines are considered to access the channel in an uncoordinated fashion, by leveraging the possibility to interleave pulse-based transmissions from different nodes. Throughout the analysis, accurate path loss, noise and multi-user interference models, validated by means of electromagnetic simulation, are utilized. In addition, the energy consumption and latency introduced by a hardware implementation of each error control technique, as well as, the additional constraints imposed by the use of energy-harvesting mechanisms to power the nanomachines, are taken into account. The results show that, despite their simplicity, EPCs outperform traditional ARQ and FEC schemes, in terms of error correcting capabilities, which results in further energy savings and reduced latency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abadal, S., Alarcon, E., Cabellos-Aparicio, A., Lemme, M., & Nemirovsky, M. (2013). Graphene-enabled wireless communication for massive multicore architectures. IEEE Communications Magazine, 51(11), 137–143.CrossRef Abadal, S., Alarcon, E., Cabellos-Aparicio, A., Lemme, M., & Nemirovsky, M. (2013). Graphene-enabled wireless communication for massive multicore architectures. IEEE Communications Magazine, 51(11), 137–143.CrossRef
2.
Zurück zum Zitat Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 1(1), 3–19.CrossRef Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 1(1), 3–19.CrossRef
3.
Zurück zum Zitat Bai, P., Zhu, G., Liu, Y., Chen, J., Jing, Q., Yang, W., et al. (2013). Cylindrical rotating triboelectric nanogenerator. ACS Nano, 7(7), 6361–6366.CrossRef Bai, P., Zhu, G., Liu, Y., Chen, J., Jing, Q., Yang, W., et al. (2013). Cylindrical rotating triboelectric nanogenerator. ACS Nano, 7(7), 6361–6366.CrossRef
4.
Zurück zum Zitat Cabellos-Aparicio, A., Llatser, I., Alarcon, E., Hsu, A., & Palacios, T. (2015). Use of thz photoconductive sources to characterize tunable graphene rf plasmonic antennas. IEEE Transactions on Nanotechnology, 14(2), 390–396.CrossRef Cabellos-Aparicio, A., Llatser, I., Alarcon, E., Hsu, A., & Palacios, T. (2015). Use of thz photoconductive sources to characterize tunable graphene rf plasmonic antennas. IEEE Transactions on Nanotechnology, 14(2), 390–396.CrossRef
5.
Zurück zum Zitat Chi, K., Zhu, Y. H., Jiang, X., & Leung, V. (2014). Energy-efficient prefix-free codes for wireless nano-sensor networks using ook modulation. IEEE Transactions on Wireless Communications, 13(5), 2670–2682.CrossRef Chi, K., Zhu, Y. H., Jiang, X., & Leung, V. (2014). Energy-efficient prefix-free codes for wireless nano-sensor networks using ook modulation. IEEE Transactions on Wireless Communications, 13(5), 2670–2682.CrossRef
6.
Zurück zum Zitat Chi, K., Zhu, Y. H., Jiang, X., & Tian, X. (2013). Optimal coding for transmission energy minimization in wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 4(3), 120–130.CrossRef Chi, K., Zhu, Y. H., Jiang, X., & Tian, X. (2013). Optimal coding for transmission energy minimization in wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 4(3), 120–130.CrossRef
8.
Zurück zum Zitat Domingo, M. C., & Vuran, M. C. (2012). Cross-layer analysis of error control in underwater wireless sensor networks. Computer Communications (Elsevier) Journal, 35(17), 2162–2172.CrossRef Domingo, M. C., & Vuran, M. C. (2012). Cross-layer analysis of error control in underwater wireless sensor networks. Computer Communications (Elsevier) Journal, 35(17), 2162–2172.CrossRef
9.
Zurück zum Zitat Jornet, J. M. (2014). Low-weight error-prevention codes for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks (Elsevier) Journal, 5(1–2), 35–44.CrossRef Jornet, J. M. (2014). Low-weight error-prevention codes for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks (Elsevier) Journal, 5(1–2), 35–44.CrossRef
10.
Zurück zum Zitat Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis of electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRef Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis of electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRef
11.
Zurück zum Zitat Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580.CrossRef Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580.CrossRef
12.
Zurück zum Zitat Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE JSAC, Special Issue on Emerging Technologies for Communications, 12(12), 685–694. Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE JSAC, Special Issue on Emerging Technologies for Communications, 12(12), 685–694.
13.
Zurück zum Zitat Jornet, J. M., & Akyildiz, I. F. (2014). Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Transactions on Communications, 62(5), 1742–1754.CrossRef Jornet, J. M., & Akyildiz, I. F. (2014). Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Transactions on Communications, 62(5), 1742–1754.CrossRef
14.
Zurück zum Zitat Jornet, J. M., Pujol, J. C., & Pareta, J. S. (2012). Phlame: A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks (Elsevier) Journal, 3(1), 74–81.CrossRef Jornet, J. M., Pujol, J. C., & Pareta, J. S. (2012). Phlame: A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks (Elsevier) Journal, 3(1), 74–81.CrossRef
15.
Zurück zum Zitat Kocaoglu, M., & Akan, O. B. (2013). Minimum energy channel codes for nanoscale wireless communications. IEEE Transactions on Wireless Communications, 12(4), 1492–1500.CrossRef Kocaoglu, M., & Akan, O. B. (2013). Minimum energy channel codes for nanoscale wireless communications. IEEE Transactions on Wireless Communications, 12(4), 1492–1500.CrossRef
16.
Zurück zum Zitat Lin, S., & Costello, D. J. (2004). Error control coding: Fundamentals and applications (Vol. 114). Englewood Cliffs: Pearson-Prentice Hall.MATH Lin, S., & Costello, D. J. (2004). Error control coding: Fundamentals and applications (Vol. 114). Englewood Cliffs: Pearson-Prentice Hall.MATH
17.
Zurück zum Zitat Priebe, S., & Kurner, T. (2013). Stochastic modeling of thz indoor radio channels. IEEE Transactions on Wireless Communications, 12(9), 4445–4455.CrossRef Priebe, S., & Kurner, T. (2013). Stochastic modeling of thz indoor radio channels. IEEE Transactions on Wireless Communications, 12(9), 4445–4455.CrossRef
18.
Zurück zum Zitat Tabor, J. (1990). Noise reduction using low weight and constant weight coding techniques. Tech. rep., MIT, Cambridge, MA. Tabor, J. (1990). Noise reduction using low weight and constant weight coding techniques. Tech. rep., MIT, Cambridge, MA.
19.
Zurück zum Zitat Vuran, M. C., & Akyildiz, I. F. (2009). Error control in wireless sensor networks: A cross layer analysis. IEEE/ACM Transactions on Networking, 17(4), 1186–1199.CrossRef Vuran, M. C., & Akyildiz, I. F. (2009). Error control in wireless sensor networks: A cross layer analysis. IEEE/ACM Transactions on Networking, 17(4), 1186–1199.CrossRef
20.
Zurück zum Zitat Wang, P., Jornet, J. M., Abbas Malik, M., Akkari, N., & Akyildiz, I. F. (2013). Energy and spectrum-aware mac protocol for perpetual wireless nanosensor networks in the terahertz band. Ad Hoc Networks (Elsevier) Journal, 11(8), 2541–2555.CrossRef Wang, P., Jornet, J. M., Abbas Malik, M., Akkari, N., & Akyildiz, I. F. (2013). Energy and spectrum-aware mac protocol for perpetual wireless nanosensor networks in the terahertz band. Ad Hoc Networks (Elsevier) Journal, 11(8), 2541–2555.CrossRef
21.
Zurück zum Zitat Wang, Z. L. (2008). Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Advanced Functional Materials, 18(22), 3553–3567.CrossRef Wang, Z. L. (2008). Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Advanced Functional Materials, 18(22), 3553–3567.CrossRef
Metadaten
Titel
Joint physical and link layer error control analysis for nanonetworks in the Terahertz band
verfasst von
N. Akkari
J. M. Jornet
P. Wang
E. Fadel
L. Elrefaei
M. G. A. Malik
S. Almasri
I. F. Akyildiz
Publikationsdatum
01.05.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2016
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-1024-y

Weitere Artikel der Ausgabe 4/2016

Wireless Networks 4/2016 Zur Ausgabe

Neuer Inhalt