Skip to main content

2015 | OriginalPaper | Buchkapitel

12. Jump-Diffusion Processes

verfasst von : Carl Chiarella, Xue-Zhong He, Christina Sklibosios Nikitopoulos

Erschienen in: Derivative Security Pricing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter considers jump-diffusion processes to allow for price fluctuations to have two components, one consisting of the usual increments of a Wiener process, the second allows for “large” jumps from time-to-time. We introduce Poisson jump process with either absolute or proportional jump sizes through the stochastic integrals and provide solutions when both the stock price and Poisson jump size are log-normal. We also extend Ito’s lemma for the jump-diffusion processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The distribution has been obtained by simulating 100,000 paths of the Poisson process up to t = 1. The normal distribution has mean of 0. 1 and standard deviation of 0. 2. The value of λ used was 10 and Δ t = 0. 004 (i.e. 250 subdivisions of the time interval).
 
2
Note that for notation simplicity we write X N instead of the more strictly correct X N(t).
 
3
For later use note that the density function for Y which we denote G(Y ), is given by
$$\displaystyle{G(Y )\mathit{dY } = \frac{1} {\sqrt{2\pi }\delta }\exp \left [-\frac{1} {2}\left (\frac{\ln Y - (\gamma -\delta ^{2}/2)} {\delta } \right )^{2}\right ]\frac{\mathit{dY }} {Y } }$$
which follows from (6.​23).
 
4
For this simulation we took μ = 0. 15, σ = 0. 20, γ = 0. 05, δ = 0. 02. The value of \(k(= e^{\gamma } - 1)\) was 0. 05. The value of Δ t was 0. 01.
 
5
Note that for the geometric jump-diffusion process (12.12)
$$\displaystyle{\mathop{\mathrm{var}}\nolimits _{t}[x_{T}] = x_{t}^{2}e^{2\mu (T-t)}\left [\exp ((\sigma ^{2} -\lambda (2e^{\gamma } - e^{2\gamma +\delta ^{2}} - 1))(T - t)) - 1\right ].}$$
See Problem 12.5.
 
Literatur
Zurück zum Zitat Ahn, C. M., & Thompson, H. E. (1988). Jump-diffusion processes and the term structure of interest rates. Journal of Finance, 43, 155–174.CrossRef Ahn, C. M., & Thompson, H. E. (1988). Jump-diffusion processes and the term structure of interest rates. Journal of Finance, 43, 155–174.CrossRef
Zurück zum Zitat Akgiray, V., & Booth, G. G. (1988). Mixed diffusion-jump processes modelling of exchange rate movements. The Review of Economics and Statistics, 70, 631–637.CrossRef Akgiray, V., & Booth, G. G. (1988). Mixed diffusion-jump processes modelling of exchange rate movements. The Review of Economics and Statistics, 70, 631–637.CrossRef
Zurück zum Zitat Cox, J. C., & Ross, S. A. (1976a). A survey of some new results in financial options pricing theory. Journal of Finance, 31, 382–402.CrossRef Cox, J. C., & Ross, S. A. (1976a). A survey of some new results in financial options pricing theory. Journal of Finance, 31, 382–402.CrossRef
Zurück zum Zitat Gihman, I. I., & Skorohod, A. V. (1972). Stochastic differential equations. Berlin: Springer.CrossRef Gihman, I. I., & Skorohod, A. V. (1972). Stochastic differential equations. Berlin: Springer.CrossRef
Zurück zum Zitat Kushner, H. J. (1967). Stochastic stability and control. New York: Academic Press. Kushner, H. J. (1967). Stochastic stability and control. New York: Academic Press.
Zurück zum Zitat Merton, R. C. (1982). On the mathematics and economics assumptions of continuous-time models. In W. F. Sharpe & C. M. Cootner (Eds.), Financial economics; essays in honor of Paul Cootner. Englewood Cliffs: Prentice-Hall. Merton, R. C. (1982). On the mathematics and economics assumptions of continuous-time models. In W. F. Sharpe & C. M. Cootner (Eds.), Financial economics; essays in honor of Paul Cootner. Englewood Cliffs: Prentice-Hall.
Zurück zum Zitat Merton, R. C., & Samuelson, P. A. (1974). Fallacy of the log-normal approximation of optimal portfolio decision making over many periods. Journal of Financial Economics, 1, 67–94.CrossRef Merton, R. C., & Samuelson, P. A. (1974). Fallacy of the log-normal approximation of optimal portfolio decision making over many periods. Journal of Financial Economics, 1, 67–94.CrossRef
Metadaten
Titel
Jump-Diffusion Processes
verfasst von
Carl Chiarella
Xue-Zhong He
Christina Sklibosios Nikitopoulos
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45906-5_12