Skip to main content

2018 | OriginalPaper | Buchkapitel

31. Kinetic Model Development and Bi-objective Optimization of Levulinic Acid Production from Sugarcane Bagasse

verfasst von : Aramide Adesina, David Lokhat

Erschienen in: The Role of Exergy in Energy and the Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The conversion of lignocellulosic biomass to levulinic acid has become a key area of research along the biorefinery theme. Process challenges include the selective production of levulinic acid at high yield as well as the formation of unwanted degradation products called humins. A single-response optimization is not efficient to determine reaction conditions for simultaneous optimum responses of yield and selectivity towards levulinic acid because the responses are related. The objectives of the study were to develop a kinetic model which includes all possible pathways to the formation of humins and subsequent simultaneous optimization of yield and selectivity. The model shows a good fit with literature data with a correlation coefficient of 0.944. The result from the bi-objective optimization shows that at temperature 423 K, acid concentration 0.50 mol/l and time 755 min, optimal yield of 60.3% and a selectivity to LA value of 64% were obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ Sci 6:76–80CrossRef Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ Sci 6:76–80CrossRef
2.
Zurück zum Zitat Amin NAS (2005) A hybrid numerical approach for multi-responses optimization of process parameters and catalyst compositions in CO 2 OCM process over CaO-MnO/CeO 2 catalyst. Chem Eng J 106:213–227CrossRef Amin NAS (2005) A hybrid numerical approach for multi-responses optimization of process parameters and catalyst compositions in CO 2 OCM process over CaO-MnO/CeO 2 catalyst. Chem Eng J 106:213–227CrossRef
3.
Zurück zum Zitat Antunes MM, Lima S, Neves P, Magalhães AL, Fazio E, Fernandes A, Neri F, Silva CM, Rocha SM, Ribeiro MF (2015) One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes. J Catal 329:522–537CrossRef Antunes MM, Lima S, Neves P, Magalhães AL, Fazio E, Fernandes A, Neri F, Silva CM, Rocha SM, Ribeiro MF (2015) One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes. J Catal 329:522–537CrossRef
4.
Zurück zum Zitat Canilha L, Chandel AK, Suzane Dos Santos Milessi T, Antunes FAF, Luiz Da Costa Freitas W, Das Graças Almeida Felipe M, Da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:989572 doi: 10.1155/2012/989572 Canilha L, Chandel AK, Suzane Dos Santos Milessi T, Antunes FAF, Luiz Da Costa Freitas W, Das Graças Almeida Felipe M, Da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:989572 doi: 10.1155/2012/989572
5.
Zurück zum Zitat Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98:1448–1453CrossRef Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98:1448–1453CrossRef
6.
Zurück zum Zitat Chang C, Ma X, Cen P (2009) Kinetic studies on wheat straw hydrolysis to Levulinic acid. Chin J Chem Eng 17:835–839CrossRef Chang C, Ma X, Cen P (2009) Kinetic studies on wheat straw hydrolysis to Levulinic acid. Chin J Chem Eng 17:835–839CrossRef
7.
Zurück zum Zitat Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219CrossRef Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219CrossRef
8.
Zurück zum Zitat Dumesic, J. A., Alonso, D. M., Bond, J. Q., Wang, D. & West, R. M. (2013). Integrated process and apparatus to produce hydrocarbons from aqueous solutions of lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, and/or alcohols. United States patent application 12/687,471, Dumesic, J. A., Alonso, D. M., Bond, J. Q., Wang, D. & West, R. M. (2013). Integrated process and apparatus to produce hydrocarbons from aqueous solutions of lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, and/or alcohols. United States patent application 12/687,471,
9.
Zurück zum Zitat Dussan K, Girisuta B, Haverty D, Leahy J, Hayes M (2013) Kinetics of levulinic acid and furfural production from Miscanthus× giganteus. Bioresour Technol 149:216–224CrossRef Dussan K, Girisuta B, Haverty D, Leahy J, Hayes M (2013) Kinetics of levulinic acid and furfural production from Miscanthus× giganteus. Bioresour Technol 149:216–224CrossRef
10.
Zurück zum Zitat Gallo JMR, Alonso DM, Mellmer MA, Yeap JH, Wong HC, Dumesic JA (2013) Production of furfural from lignocellulosic biomass using beta zeolite and biomass-derived solvent. Top Catal 56:1775–1781CrossRef Gallo JMR, Alonso DM, Mellmer MA, Yeap JH, Wong HC, Dumesic JA (2013) Production of furfural from lignocellulosic biomass using beta zeolite and biomass-derived solvent. Top Catal 56:1775–1781CrossRef
11.
Zurück zum Zitat Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99:8367–8375CrossRef Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99:8367–8375CrossRef
12.
Zurück zum Zitat Girisuta B, Dussan K, Haverty D, Leahy J, Hayes M (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70CrossRef Girisuta B, Dussan K, Haverty D, Leahy J, Hayes M (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70CrossRef
13.
Zurück zum Zitat Lange J-P, Van De Graaf WD, Haan RJ (2009) Conversion of Furfuryl alcohol into ethyl Levulinate using solid acid catalysts. ChemSusChem 2:437–441CrossRef Lange J-P, Van De Graaf WD, Haan RJ (2009) Conversion of Furfuryl alcohol into ethyl Levulinate using solid acid catalysts. ChemSusChem 2:437–441CrossRef
14.
Zurück zum Zitat Min K, Kim S, Yum T, Kim Y, Sang B-I, Um Y (2013) Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum. Appl Microbiol Biotechnol 97:5627–5634CrossRef Min K, Kim S, Yum T, Kim Y, Sang B-I, Um Y (2013) Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum. Appl Microbiol Biotechnol 97:5627–5634CrossRef
15.
Zurück zum Zitat Raspolli Galletti AM, Antonetti C, Ribechini E, Colombini MP, Nassi O, Di Nasso N, Bonari E (2013) From giant reed to levulinic acid and gamma-valerolactone: A high yield catalytic route to valeric biofuels. Appl Energy 102:157–162CrossRef Raspolli Galletti AM, Antonetti C, Ribechini E, Colombini MP, Nassi O, Di Nasso N, Bonari E (2013) From giant reed to levulinic acid and gamma-valerolactone: A high yield catalytic route to valeric biofuels. Appl Energy 102:157–162CrossRef
16.
Zurück zum Zitat Tukacs JM, Novak M, Dibo G, Mika LT (2014) An improved catalytic system for the reduction of levulinic acid to [gamma]-valerolactone. Cat Sci Technol 4:2908–2912CrossRef Tukacs JM, Novak M, Dibo G, Mika LT (2014) An improved catalytic system for the reduction of levulinic acid to [gamma]-valerolactone. Cat Sci Technol 4:2908–2912CrossRef
17.
Zurück zum Zitat Upare PP, Lee JM, Hwang YK, Hwang DW, Lee JH, Halligudi SB, Hwang JS, Chang JS (2011) Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 4:1749–1752CrossRef Upare PP, Lee JM, Hwang YK, Hwang DW, Lee JH, Halligudi SB, Hwang JS, Chang JS (2011) Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 4:1749–1752CrossRef
18.
Zurück zum Zitat Vlachos DG, Chen JG, Gorte RJ, Huber GW, Tsapatsis M (2010) Catalysis Center for Energy Innovation for biomass processing: research strategies and goals. Catal Lett 140:77–84CrossRef Vlachos DG, Chen JG, Gorte RJ, Huber GW, Tsapatsis M (2010) Catalysis Center for Energy Innovation for biomass processing: research strategies and goals. Catal Lett 140:77–84CrossRef
Metadaten
Titel
Kinetic Model Development and Bi-objective Optimization of Levulinic Acid Production from Sugarcane Bagasse
verfasst von
Aramide Adesina
David Lokhat
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-89845-2_31