Skip to main content
Erschienen in: Journal of Computational Electronics 4/2019

25.07.2019

Kinetic Monte Carlo simulation of transport in amorphous silicon passivation layers in silicon heterojunction solar cells

verfasst von: Pradyumna Muralidharan, Stephen M. Goodnick, Dragica Vasileska

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silicon heterojunction solar cell device structures use carrier-selective contacts to maximize collection of photogenerated carriers. The carrier-selective contact structure consists of doped hydrogenated amorphous silicon and intrinsic hydrogenated amorphous silicon [a-Si:H(i)]. In this structure, the a-Si:H(i) layer plays a crucial role as it passivates the heterointerface between the doped hydrogenated amorphous silicon and the crystalline silicon enabling the solar cell to achieve high device efficiencies. However, the a-Si:H(i) layer also creates a potential barrier to photogenerated carriers which obstructs them from getting collected. Previously, experimental studies in the literature have predicted that the photogenerated carriers cross the barrier by defect-assisted transport (hopping). Traditionally, theoretical models that are employed to study the electrical characteristics of silicon heterojunction solar cells do not provide any great insight into the transport of carriers via defects. In this paper, we present an in-house developed kinetic Monte Carlo that simulates the transport of photogenerated holes through the band tail defect states in the a-Si:H(i) layer. This is done primarily by defining transition rates associated with carrier-defect interactions. We conduct simulations to understand the impact of the properties (optical phonon energy, defect density, etc.) of the a-Si:H(i) layer on transport of photogenerated holes. Our simulations indicate that multi-phonon injection and hopping processes assist photogenerated holes to cross the a-Si:H(i) layer, which is in agreement with experimental findings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Richter, A., Hermle, M., Glunz, S.: Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3(4), 1184–1191 (2013)CrossRef Richter, A., Hermle, M., Glunz, S.: Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3(4), 1184–1191 (2013)CrossRef
2.
Zurück zum Zitat Battaglia, C., Cuevas, A., De Wolf, S.: High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016)CrossRef Battaglia, C., Cuevas, A., De Wolf, S.: High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016)CrossRef
3.
Zurück zum Zitat Yoshikawa, K., et al.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2(5), 17032 (2017)CrossRef Yoshikawa, K., et al.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2(5), 17032 (2017)CrossRef
4.
Zurück zum Zitat Cuevas, A., Allen, T., Bullock, J.: Skin care for healthy silicon solar cells. In: 2015 IEEE 42nd Photovoltaic Specialist Conference, no. 1, pp. 1–6 (2015) Cuevas, A., Allen, T., Bullock, J.: Skin care for healthy silicon solar cells. In: 2015 IEEE 42nd Photovoltaic Specialist Conference, no. 1, pp. 1–6 (2015)
5.
Zurück zum Zitat Taguchi, M., Terakawa, A., Maruyama, E., Tanaka, M.: Obtaining a higher voc in HIT cells. Prog. Photovolt. Res. Appl. 13(6), 481–488 (2005)CrossRef Taguchi, M., Terakawa, A., Maruyama, E., Tanaka, M.: Obtaining a higher voc in HIT cells. Prog. Photovolt. Res. Appl. 13(6), 481–488 (2005)CrossRef
6.
Zurück zum Zitat Powell, M., Deane, S.: Defect-pool model and the hydrogen density of states in hydrogenated amorphous silicon. Phys. Rev. B 53(15), 10121–10132 (1996)CrossRef Powell, M., Deane, S.: Defect-pool model and the hydrogen density of states in hydrogenated amorphous silicon. Phys. Rev. B 53(15), 10121–10132 (1996)CrossRef
7.
Zurück zum Zitat Powell, M.J., Deane, S.C.: Improved defect-pool model for charged defects in amorphous silicon. Phys. Rev. B 48(15), 10815–10827 (1993)CrossRef Powell, M.J., Deane, S.C.: Improved defect-pool model for charged defects in amorphous silicon. Phys. Rev. B 48(15), 10815–10827 (1993)CrossRef
8.
Zurück zum Zitat Taguchi, M., Maruyama, E., Tanaka, M.: Temperature dependence of amorphous/crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 47(2), 814–818 (2008)CrossRef Taguchi, M., Maruyama, E., Tanaka, M.: Temperature dependence of amorphous/crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 47(2), 814–818 (2008)CrossRef
9.
Zurück zum Zitat Crandall, R.S., Iwaniczko, E., Li, J.V., Page, M.R.: A comprehensive study of hole collection in heterojunction solar cells. J. Appl. Phys. 112(9), 093713 (2012)CrossRef Crandall, R.S., Iwaniczko, E., Li, J.V., Page, M.R.: A comprehensive study of hole collection in heterojunction solar cells. J. Appl. Phys. 112(9), 093713 (2012)CrossRef
10.
Zurück zum Zitat Lachaume, R., Favre, W., Scheiblin, P., Garros, X.: Influence of a-Si:H/ITO interface properties on performance of heterojunction solar cells. Energy Procedia 38, 770–776 (2013)CrossRef Lachaume, R., Favre, W., Scheiblin, P., Garros, X.: Influence of a-Si:H/ITO interface properties on performance of heterojunction solar cells. Energy Procedia 38, 770–776 (2013)CrossRef
11.
Zurück zum Zitat Luppina, P., Lugli, P., Goodnick, S.M.: Modeling of silicon heterojunction solar cells. In: 2015 IEEE 42nd Photovoltaic Specialist Conference, pp. 1–6 (2015) Luppina, P., Lugli, P., Goodnick, S.M.: Modeling of silicon heterojunction solar cells. In: 2015 IEEE 42nd Photovoltaic Specialist Conference, pp. 1–6 (2015)
12.
Zurück zum Zitat Varache, R., Kleider, J.P., Gueunier-Farret, M.E., Korte, L.: Silicon heterojunction solar cells: optimization of emitter and contact properties from analytical calculation and numerical simulation. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 178(9), 593–598 (2013)CrossRef Varache, R., Kleider, J.P., Gueunier-Farret, M.E., Korte, L.: Silicon heterojunction solar cells: optimization of emitter and contact properties from analytical calculation and numerical simulation. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 178(9), 593–598 (2013)CrossRef
13.
Zurück zum Zitat Yang, X., Zheng, P., Bi, Q., Weber, K.: Silicon heterojunction solar cells with electron selective TiOx contact. Sol. Energy Mater. Sol. Cells 150, 32–38 (2016)CrossRef Yang, X., Zheng, P., Bi, Q., Weber, K.: Silicon heterojunction solar cells with electron selective TiOx contact. Sol. Energy Mater. Sol. Cells 150, 32–38 (2016)CrossRef
14.
Zurück zum Zitat Bivour, M., Zähringer, F., Ndione, P., Hermle, M.: Sputter-deposited WOx and MoOx for hole selective contacts. Energy Procedia 124, 400–405 (2017)CrossRef Bivour, M., Zähringer, F., Ndione, P., Hermle, M.: Sputter-deposited WOx and MoOx for hole selective contacts. Energy Procedia 124, 400–405 (2017)CrossRef
15.
Zurück zum Zitat Battaglia, C., et al.: Hole selective MoOx contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014)CrossRef Battaglia, C., et al.: Hole selective MoOx contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014)CrossRef
16.
Zurück zum Zitat Messmer, C., Bivour, M., Schön, J., Glunz, S.W., Hermle, M.: Numerical simulation of silicon heterojunction solar cells featuring metal oxides as carrier-selective contacts. IEEE J. Photovolt. J. Photovolt. 8(2), 456–464 (2018)CrossRef Messmer, C., Bivour, M., Schön, J., Glunz, S.W., Hermle, M.: Numerical simulation of silicon heterojunction solar cells featuring metal oxides as carrier-selective contacts. IEEE J. Photovolt. J. Photovolt. 8(2), 456–464 (2018)CrossRef
17.
Zurück zum Zitat Vijayan, R.A., et al.: Hole-collection mechanism in passivating metal-oxide contacts on Si solar cells: insights from numerical simulations. IEEE J. Photovolt. 8(2), 473–482 (2018)CrossRef Vijayan, R.A., et al.: Hole-collection mechanism in passivating metal-oxide contacts on Si solar cells: insights from numerical simulations. IEEE J. Photovolt. 8(2), 473–482 (2018)CrossRef
18.
Zurück zum Zitat Campa, A., Valla, A., Brecl, K., Smole, F., Munoz, D., Topic, M.: Multiscale modeling and back contact design of bifacial silicon heterojunction solar cells. IEEE J. Photovolt. 8(1), 89–95 (2018)CrossRef Campa, A., Valla, A., Brecl, K., Smole, F., Munoz, D., Topic, M.: Multiscale modeling and back contact design of bifacial silicon heterojunction solar cells. IEEE J. Photovolt. 8(1), 89–95 (2018)CrossRef
19.
Zurück zum Zitat Krc, J., et al.: Potential of thin-film silicon solar cells by using high haze TCO superstrates. Thin Solid Films 518(11), 3054–3058 (2010)CrossRef Krc, J., et al.: Potential of thin-film silicon solar cells by using high haze TCO superstrates. Thin Solid Films 518(11), 3054–3058 (2010)CrossRef
20.
Zurück zum Zitat Martin-bragado, I., Borges, R., Pablo, J., Jaraiz, M.: Progress in materials science kinetic monte carlo simulation for semiconductor processing: a review. Prog. Mater Sci. 92, 1–32 (2018)CrossRef Martin-bragado, I., Borges, R., Pablo, J., Jaraiz, M.: Progress in materials science kinetic monte carlo simulation for semiconductor processing: a review. Prog. Mater Sci. 92, 1–32 (2018)CrossRef
21.
Zurück zum Zitat Carlo, M., Jegert, G., Kersch, A., Weinreich, W., Schröder, U., Lugli, P.: Modeling of leakage currents in high-k dielectrics: three-dimensional approach via kinetic Monte Carlo. Appl. Phys. Let 96, 062113 (2010)CrossRef Carlo, M., Jegert, G., Kersch, A., Weinreich, W., Schröder, U., Lugli, P.: Modeling of leakage currents in high-k dielectrics: three-dimensional approach via kinetic Monte Carlo. Appl. Phys. Let 96, 062113 (2010)CrossRef
22.
Zurück zum Zitat van der Holst, J.J.M.: Three-Dimensional Modeling of Charge Transport, Injection and Recombination in Organic Light-Emitting Diodes. Technische Universiteit Eindhoven, Eindhoven (2010) van der Holst, J.J.M.: Three-Dimensional Modeling of Charge Transport, Injection and Recombination in Organic Light-Emitting Diodes. Technische Universiteit Eindhoven, Eindhoven (2010)
23.
Zurück zum Zitat Albes, T., Popescu, B., Popescu, D., Loch, M., Arca, F., Lugli, P.: Kinetic Monte Carlo modeling of low-bandgap polymer solar cells. In: 2014 IEEE 40th Photovoltaic Specialist Conference, pp. 57–62 (2014) Albes, T., Popescu, B., Popescu, D., Loch, M., Arca, F., Lugli, P.: Kinetic Monte Carlo modeling of low-bandgap polymer solar cells. In: 2014 IEEE 40th Photovoltaic Specialist Conference, pp. 57–62 (2014)
24.
Zurück zum Zitat Stangl, R., Leendertz, C., Haschke, J.: Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: The Open-Source on Demand Program AFORS-HET (2010) Stangl, R., Leendertz, C., Haschke, J.: Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: The Open-Source on Demand Program AFORS-HET (2010)
25.
Zurück zum Zitat Street, R.A.: Hydrogenated Amorphous Silicon. Cambridge University Press, Cambridge (1991)CrossRef Street, R.A.: Hydrogenated Amorphous Silicon. Cambridge University Press, Cambridge (1991)CrossRef
26.
Zurück zum Zitat Muralidharan, P., Ghosh, K., Vasileska, D., Goodnick, S.M.: Hot hole transport in a-Si/c-Si heterojunction solar cells. In: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (2014) Muralidharan, P., Ghosh, K., Vasileska, D., Goodnick, S.M.: Hot hole transport in a-Si/c-Si heterojunction solar cells. In: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (2014)
27.
Zurück zum Zitat Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRef Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRef
28.
Zurück zum Zitat Lundström, I., Svensson, C.: Tunneling to traps in insulators. J. Appl. Phys. 43(12), 5045–5047 (1972)CrossRef Lundström, I., Svensson, C.: Tunneling to traps in insulators. J. Appl. Phys. 43(12), 5045–5047 (1972)CrossRef
29.
Zurück zum Zitat Muralidharan, P., Bowden, S., Goodnick, S.M., Vasileska, D.: A kinetic Monte Carlo approach to study transport in amorphous silicon HIT cells. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 743–758 (2015) Muralidharan, P., Bowden, S., Goodnick, S.M., Vasileska, D.: A kinetic Monte Carlo approach to study transport in amorphous silicon HIT cells. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 743–758 (2015)
30.
Zurück zum Zitat Herrmann, M., Schenk, A.: Field and high-temperature dependence of the long term charge loss in erasable programmable read only memories: measurements and modeling. J. Appl. Phys. 77(9), 4522–4540 (1995)CrossRef Herrmann, M., Schenk, A.: Field and high-temperature dependence of the long term charge loss in erasable programmable read only memories: measurements and modeling. J. Appl. Phys. 77(9), 4522–4540 (1995)CrossRef
31.
Zurück zum Zitat Muralidharan, P., Vasileska, D., Goodnick, S.M., Bowden, S.: A kinetic Monte Carlo study of defect assisted transport in silicon heterojunction solar cells. Phys. Status Solidi C Curr Top. Solid State Phys. 12(9–11), 1198–1200 (2015)CrossRef Muralidharan, P., Vasileska, D., Goodnick, S.M., Bowden, S.: A kinetic Monte Carlo study of defect assisted transport in silicon heterojunction solar cells. Phys. Status Solidi C Curr Top. Solid State Phys. 12(9–11), 1198–1200 (2015)CrossRef
32.
Zurück zum Zitat Miller, A., Abrahams, E.: Impurity conduction at low concentrations. Phys. Rev. 120(3), 745–755 (1960)CrossRef Miller, A., Abrahams, E.: Impurity conduction at low concentrations. Phys. Rev. 120(3), 745–755 (1960)CrossRef
33.
Zurück zum Zitat Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647–648 (1938)CrossRef Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647–648 (1938)CrossRef
34.
Zurück zum Zitat Hartke, J.L.: The three-dimensional Poole–Fenkel effect. J. Appl. Phys. 39(10), 4871–4873 (1968)CrossRef Hartke, J.L.: The three-dimensional Poole–Fenkel effect. J. Appl. Phys. 39(10), 4871–4873 (1968)CrossRef
35.
Zurück zum Zitat Jegert, G.C.: Modeling of Leakage Currents in High-k Dielectrics. Technische Universitat Munchen, Munich (2012) Jegert, G.C.: Modeling of Leakage Currents in High-k Dielectrics. Technische Universitat Munchen, Munich (2012)
36.
Zurück zum Zitat Stückelberger, M.E.: Hydrogenated Amorphous Silicon : Impact of Process Conditions on Material Properties and Solar Cell Efficiency. Ecole Polytechnique Federale De Lausanne, Lausanne (2014) Stückelberger, M.E.: Hydrogenated Amorphous Silicon : Impact of Process Conditions on Material Properties and Solar Cell Efficiency. Ecole Polytechnique Federale De Lausanne, Lausanne (2014)
Metadaten
Titel
Kinetic Monte Carlo simulation of transport in amorphous silicon passivation layers in silicon heterojunction solar cells
verfasst von
Pradyumna Muralidharan
Stephen M. Goodnick
Dragica Vasileska
Publikationsdatum
25.07.2019
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01379-3

Weitere Artikel der Ausgabe 4/2019

Journal of Computational Electronics 4/2019 Zur Ausgabe

Neuer Inhalt