Skip to main content

2015 | OriginalPaper | Buchkapitel

8. Laminar Boundary Layer

verfasst von : Roberto Mauri

Erschienen in: Transport Phenomena in Multiphase Flows

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Sect. 3.​3 we have seen that when a viscous fluid flows past a submerged object at high Reynolds number, \(Re \gg 1\) then its convective momentum flux greatly exceeds its diffuse counterpart, i.e., inertial forces are much larger than viscous forces. This is true, however, provided that the fluid points that we are considering are not too close to the outer surface of the object, where the fluid velocity is null, due to the no-slip boundary condition. Accordingly, near the surface of the object, we define a small region of thickness δ, denoted boundary layer, such that, when the distance from the wall, y, is larger than δ, i.e. when \(y > \delta\) inertial forces prevail while when \(y < \delta\) viscous forces are dominant. Then, as we saw in Sect. 3.​3, the boundary layer thickness can be determined by imposing that at the edge of this region, when y  δ, inertial forces balance viscous forces. At the end, we found that the boundary layer thickness decreases, proportionally to the size, L, of the object, as the inverse of the square root of the Reynolds number, i.e., \({\delta \mathord{\left/ {\vphantom {\delta L}} \right. \kern-0pt} L} \simeq Re^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}}.\) This relation reveals why boundary layers are so important, although they occupy only a small region of space: the drag of the object depends on the shear stress at the wall, τ w , which is determined by the velocity profile at the wall, and so it is inversely proportional to the boundary layer thickness; therefore, as Re increase, δ decreases and τ w increases. In this chapter, after analyzing the scaling of the problem in Sect. 8.1, in Sect. 8.2 we will study the classical Blasius self-similar solution of the flow past a flat plate, and then in Sect. 8.3 consider more general cases, leading to flow separation. Finally, in Sect. 8.4, we analyze the approximate von Karman–Pohlhausen integral method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In fact, a differential equation of order n is solved integrating n times and so introducing n constants, which in turn can be determined by imposing n (boundary or initial) conditions.
 
2
It was the Ph.D. thesis of Paul Richard Heinrich Blasius (1883–1970), a German fluid dynamics physicist, who was one of the first student of L. Prandtl. For more than 50 years H. Blasius taught at the University of Hamburg.
 
3
Named after Theodore von Kármán (1881–1963), a Hungarian-American mathematician, aerospace engineer and physicist. He was a student of L. Prandtl and taught first at the Aeronautical Institute at Aachen until 1936, when he moved to Caltech, where in 1944 he founded the JPL laboratories, and where he continued to teach until his death.
 
4
Named after Vincent Strouhal (1850–1922), a Czech physicist who first investigated the steady humming or singing of telegraph wires.
 
5
It was found by Falkner and Skan in 1931, and then extended by Hartree in 1937.
 
6
Sometimes, they are indicated as δ * and θ, respectively.
 
Metadaten
Titel
Laminar Boundary Layer
verfasst von
Roberto Mauri
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15793-1_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.