Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.03.2017 | Original Paper | Ausgabe 1/2019

Bulletin of Engineering Geology and the Environment 1/2019

Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: comparison of training algorithms

Zeitschrift:
Bulletin of Engineering Geology and the Environment > Ausgabe 1/2019
Autoren:
Aslı Can, Gulseren Dagdelenler, Murat Ercanoglu, Harun Sonmez

Abstract

This study aims to investigate the performances of different training algorithms used for an artificial neural network (ANN) method to produce landslide susceptibility maps. For this purpose, Ovacık region (southeast of Karabük Province), located in the Western Black Sea Region (Turkey), was selected as the study area. A total of 196 landslides were mapped, and a landslide database was prepared. Topographical elevation, slope angle, aspect, wetness index, lithology, and vegetation index parameters were taken into account for the landslide susceptibility analyses. Two different ANN structures, which were composed of single and double hidden layers, were applied to compare the effects of the ANN. Four different training algorithms, namely batch back-propagation, quick propagation, conjugate gradient descent (CGD), and Levenberg–Marquardt, were used for the training stage of the ANN models. Thus, eight different landslide susceptibility maps were produced for the study area using different ANN structures and algorithms. In order to assess the effects and spatial performances of the considered training algorithms on the ANN models, the relative operating characteristics (ROC) and relation value (rij) approaches were used. The susceptibility map produced by CGD1 has the highest AUC (0.817) and rij values (0.972). Comparison of the susceptibility maps indicated that CGD training algorithm is the slowest one among the other algorithms, but this algorithm showed the highest performance on the results.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

Bulletin of Engineering Geology and the Environment 1/2019 Zur Ausgabe