Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Langlands Parametrization

verfasst von : Gaëtan Chenevier, Jean Lannes

Erschienen in: Automorphic Forms and Even Unimodular Lattices

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter starts with a general discussion of reductive groups and their root data. Our aim is to review the Satake isomorphism for the Hecke ring of a reductive group scheme over the p-adic integers \(\mathbb {Z}_p\), as well as the Harish-Chandra isomorphism for the center of the universal enveloping algebra of a complex reductive Lie algebra. In both cases, we explain Langlands’ point of view on these isomorphisms in terms of the so-called Langlands dual group. This allows to define Langlands parameters and state the important Arthur-Langlands conjecture. As another application, we obtain a deeper understanding of the Hecke rings of classical \(\mathbb {Z}\)-groups.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Recall that an A-group is a group scheme over A which is affine and of finite type.
 
2
Let us emphasize that this assumption is not part of the axioms in the references listed above; it will help us avoid certain difficulties.
 
3
For α ∈ Φ(G, T), let T α ⊂ T be the neutral component of the kernel of \(\alpha \colon T \rightarrow \mathbb {G}_m\), and let Z α be the derived subgroup of the centralizer of T α in G. It is a k-group isomorphic to SL2 or PGL2. Recall that the coroot α ∈X(T) is the unique cocharacter with image in Z α such that 〈α, α 〉 = 2.
 
4
Strictly speaking, we should replace Hp(G) by the opposite ring Hp(G)opp in this isomorphism. Since the existence of the latter implies the commutativity of Hp(G), we will leave out this decoration.
 
5
Let V be a \(G(\mathbb {Q}_p)\)-module and \(\pi \colon V^{G(\mathbb {Z}_p)} \rightarrow V_{N(\mathbb {Q}_p)}\) the canonical projection. The ring H(G) acts on \(V^{G(\mathbb {Z}_p)}\) (Sect. 4.​2.​2). By the construction of s 2, we have π ∘ T = s 2(T) ∘ π for every T ∈Hp(G). The assertion follows by considering \(V=\mathbb {Z}\) and recalling the shift by ρ in the definition of the Satake homomorphism.
 
6
We use λ(p) to denote the image of p by the morphism \(\mathbb {Q}_p^\times \rightarrow T(\mathbb {Q}_p)\) induced by λ.
 
7
This is because this outer conjugate admits a vector \(\mathcal {C}^\infty \) that is annihilated by \(\mathfrak {p}^+\) and generates W under the action of K (lowest weight). Its \((\mathfrak {g},K)\)-module can be studied in a manner completely analogous to that of \(\pi ^{\prime }_W\): it can be isomorphic to that of \(\pi ^{\prime }_W\) only if it is finite-dimensional, that is, if \(\pi ^{\prime }_W\) (and therefore W) is trivial. This does not occur because the trivial representation of \({\mathrm{Sp}}_{2g}(\mathbb {R})\) does not occur in \(\mathcal {A}_{\mathrm{cusp}}({\mathrm{PGSp}}_{2g})\).
 
8
Gross’ argument is the following. It is a general fact that the natural action of \({\mathrm{Gal}}(\overline {\mathbb {Q}}/\mathbb {Q})\) on \(\varPsi (G_{\overline {\mathbb {Q}}})\) factors into a faithful action of the Galois group of a number field K that is Galois over \(\mathbb {Q}\). The reductivity of G over \(\mathbb {Z}_p\) implies that K is unramified at p, and therefore \(K=\mathbb {Q}\) by a famous result of Minkowski. This, in turn, implies that G is split over \(\mathbb {Z}_p\) and the rest of the assertions above.
 
9
In general, a condition that is conjecturally automatic is added on π ; we omit it here.
 
Literatur
9.
Zurück zum Zitat J. Arthur, Unipotent automorphic representations: conjectures, in Orbites unipotentes et représentations II : groupes p-adiques et réels, Astérisque 171–172 (Soc. Math. France, Paris, 1989), pp. 13–71. J. Arthur, Unipotent automorphic representations: conjectures, in Orbites unipotentes et représentations II : groupes p-adiques et réels, Astérisque 171–172 (Soc. Math. France, Paris, 1989), pp. 13–71.
13.
Zurück zum Zitat J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, Colloquium Publ., vol. 61 (Amer. Math. Soc., 2013). J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, Colloquium Publ., vol. 61 (Amer. Math. Soc., 2013).
18.
Zurück zum Zitat V. Bargmann, Irreducible unitary representations of the Lorentz group, Annals of Math. 48 (1947), pp. 568–640.MathSciNetCrossRef V. Bargmann, Irreducible unitary representations of the Lorentz group, Annals of Math. 48 (1947), pp. 568–640.MathSciNetCrossRef
34.
Zurück zum Zitat A. Borel, Linear algebraic groups, 2nd ed., Grad. Texts in Math., vol. 126 (Springer Verlag, 1991). A. Borel, Linear algebraic groups, 2nd ed., Grad. Texts in Math., vol. 126 (Springer Verlag, 1991).
39.
Zurück zum Zitat N. Bourbaki, Éléments de mathématique, Groupes et algèbres de Lie, Chapitres 4, 5 et 6 (Masson, Paris, 1981).MATH N. Bourbaki, Éléments de mathématique, Groupes et algèbres de Lie, Chapitres 4, 5 et 6 (Masson, Paris, 1981).MATH
48.
Zurück zum Zitat P. Cartier, Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII, (Amer. Math. Soc., Providence, RI, 1979), pp. 111–157. P. Cartier, Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII, (Amer. Math. Soc., Providence, RI, 1979), pp. 111–157.
73.
Zurück zum Zitat M. Demazure, A. Grothendieck, Schémas en groupes, SGA 3, Tome III, Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962–1964, Doc. Math., vol. 8 (Soc. Math. France, 2011). M. Demazure, A. Grothendieck, Schémas en groupes, SGA 3, Tome III, Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962–1964, Doc. Math., vol. 8 (Soc. Math. France, 2011).
76.
Zurück zum Zitat J. Dixmier, Algèbres enveloppantes (Gauthier-Villars Éd., 1974). J. Dixmier, Algèbres enveloppantes (Gauthier-Villars Éd., 1974).
89.
Zurück zum Zitat G. van der Geer, Siegel modular forms and their applications, in The 1–2–3 of modular forms, ed. by J. H. Bruinier, G. van der Geer, G. Harder, D. Zagier, Universitext (Springer Verlag, Berlin, 2008), pp. 181–245.MATH G. van der Geer, Siegel modular forms and their applications, in The 1–2–3 of modular forms, ed. by J. H. Bruinier, G. van der Geer, G. Harder, D. Zagier, Universitext (Springer Verlag, Berlin, 2008), pp. 181–245.MATH
90.
Zurück zum Zitat S. Gelbart, H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Sup. 11 (1978), pp. 1–73.MathSciNetCrossRef S. Gelbart, H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Sup. 11 (1978), pp. 1–73.MathSciNetCrossRef
96.
Zurück zum Zitat B. Gross, Reductive groups over \(\mathbb {Z}\), Invent. Math. 124 (1996), pp. 263–279. B. Gross, Reductive groups over \(\mathbb {Z}\), Invent. Math. 124 (1996), pp. 263–279.
97.
Zurück zum Zitat B. Gross, On the Satake isomorphism, in Galois representations in arithmetic algebraic geometry, ed. by A. Scholl, R. Taylor (Cambridge Univ. Press, 1998). B. Gross, On the Satake isomorphism, in Galois representations in arithmetic algebraic geometry, ed. by A. Scholl, R. Taylor (Cambridge Univ. Press, 1998).
102.
Zurück zum Zitat J. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math., vol. 9 (Springer Verlag, 1972). J. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math., vol. 9 (Springer Verlag, 1972).
112.
Zurück zum Zitat H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representations I, Amer. J. of Math. 103 (1981), pp. 499–558.MathSciNetCrossRef H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representations I, Amer. J. of Math. 103 (1981), pp. 499–558.MathSciNetCrossRef
113.
Zurück zum Zitat H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representations II, Amer. J. of Math. 103 (1981), pp. 777–815.MathSciNetCrossRef H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representations II, Amer. J. of Math. 103 (1981), pp. 777–815.MathSciNetCrossRef
114.
Zurück zum Zitat J. Jantzen, Representations of algebraic groups, 2nd edn., Math. Survey Monogr., vol. 107 (Amer. Math. Soc., 2007). J. Jantzen, Representations of algebraic groups, 2nd edn., Math. Survey Monogr., vol. 107 (Amer. Math. Soc., 2007).
119.
Zurück zum Zitat A. W. Knapp, Representation theory of semisimple groups (Princeton Univ. Press, 1986). A. W. Knapp, Representation theory of semisimple groups (Princeton Univ. Press, 1986).
129.
135.
Zurück zum Zitat R. Langlands, Problems in the theory of automorphic forms, Lecture Notes in Math., vol. 170 (Springer Verlag, 1970). R. Langlands, Problems in the theory of automorphic forms, Lecture Notes in Math., vol. 170 (Springer Verlag, 1970).
136.
Zurück zum Zitat R. Langlands, Euler products, Yale Math. Monogr., vol. 1 (Yale Univ. Press, 1971). R. Langlands, Euler products, Yale Math. Monogr., vol. 1 (Yale Univ. Press, 1971).
139.
Zurück zum Zitat R. Langlands, Automorphic representations, Shimura varieties, and motives (Ein Märchen), in Automorphic forms, representations and L-functions, II (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 205–246. R. Langlands, Automorphic representations, Shimura varieties, and motives (Ein Märchen), in Automorphic forms, representations and L-functions, II (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 205–246.
142.
Zurück zum Zitat G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities, Astérisque, vol. 101 (Soc. Math. France, Paris, 1983), pp. 208–227.MATH G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities, Astérisque, vol. 101 (Soc. Math. France, Paris, 1983), pp. 208–227.MATH
151.
Zurück zum Zitat C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Sup. 22 (1989), pp. 605–674.CrossRef C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Sup. 22 (1989), pp. 605–674.CrossRef
169.
Zurück zum Zitat S. Rallis, The Eichler commutation relation and the continuous spectrum of the Weil representation, in Non-Commutative Harmonic Analysis, Lecture Notes in Math., vol. 728 (Springer Verlag, 1979), pp. 211–244. S. Rallis, The Eichler commutation relation and the continuous spectrum of the Weil representation, in Non-Commutative Harmonic Analysis, Lecture Notes in Math., vol. 728 (Springer Verlag, 1979), pp. 211–244.
174.
Zurück zum Zitat I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. Inst. Hautes Études Sci. 18 (1963), pp. 5–69.MathSciNetCrossRef I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. Inst. Hautes Études Sci. 18 (1963), pp. 5–69.MathSciNetCrossRef
177.
Zurück zum Zitat J.-P. Serre, Cours d’arithmétique (Publ. Univ. France, Paris, 1970).MATH J.-P. Serre, Cours d’arithmétique (Publ. Univ. France, Paris, 1970).MATH
178.
Zurück zum Zitat F. Shahidi, Eisenstein series and automorphic L-functions, Colloquium Publ., vol. 58 (Amer. Math. Soc., 2010). F. Shahidi, Eisenstein series and automorphic L-functions, Colloquium Publ., vol. 58 (Amer. Math. Soc., 2010).
187.
Zurück zum Zitat G. Shimura, On the modular correspondences of \(\mbox{Sp}(n,\mathbb {Z})\) and their congruence relation, Proc. Natl. Aca. Sci. 49 (1963), pp. 824–828. G. Shimura, On the modular correspondences of \(\mbox{Sp}(n,\mathbb {Z})\) and their congruence relation, Proc. Natl. Aca. Sci. 49 (1963), pp. 824–828.
191.
Zurück zum Zitat T. Springer, Linear algebraic groups, 2nd edn., Progress in Math., vol. 9 (Birkhäuser, 1998).CrossRef T. Springer, Linear algebraic groups, 2nd edn., Progress in Math., vol. 9 (Birkhäuser, 1998).CrossRef
192.
Zurück zum Zitat T. Springer, Reductive groups, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 3–27. T. Springer, Reductive groups, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 3–27.
193.
198.
Zurück zum Zitat J. Tits, Reductive groups over local fields, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 29–69. J. Tits, Reductive groups over local fields, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 29–69.
208.
Zurück zum Zitat N. Wallach, On the constant term of a square integrable automorphic form, Operator algebras and group representations, Vol. II (Neptun, 1980), Monogr. Stud. Math., vol. 18 (Pitman, Boston, MA, 1984), pp. 227–237. N. Wallach, On the constant term of a square integrable automorphic form, Operator algebras and group representations, Vol. II (Neptun, 1980), Monogr. Stud. Math., vol. 18 (Pitman, Boston, MA, 1984), pp. 227–237.
209.
Zurück zum Zitat N. Wallach, Real reductive groups I, Pure and Applied math., vol. 132 (Acad. Press, 1988). N. Wallach, Real reductive groups I, Pure and Applied math., vol. 132 (Acad. Press, 1988).
Metadaten
Titel
Langlands Parametrization
verfasst von
Gaëtan Chenevier
Jean Lannes
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95891-0_6

Premium Partner