Skip to main content

2018 | OriginalPaper | Buchkapitel

7. Large Deviations for Infectious Diseases Models

verfasst von : Peter Kratz, Etienne Pardoux

Erschienen in: Séminaire de Probabilités XLIX

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study large deviations of a Poisson driven system of stochastic differential equations modeling the propagation of an infectious disease in a large population, considered as a small random perturbation of its law of large numbers ODE limit. Since some of the rates vanish on the boundary of the domain where the solution takes its values, thus making the action functional possibly explode, our system does not obey assumptions which are usually made in the literature. We present the whole theory of large deviations for systems which include the infectious disease models, and apply our results to the study of the time taken for an endemic equilibrium to cease, due to random effects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The reasoning behind this is the following. Assume that an infectious individual meets on average α > 0 other individuals in unit time. If each contact of a susceptible and an infectious individual yields a new infection with probability p, the average number of new infections per unit time is βS(t)I(t)∕N, where β =  since all individuals are contacted with the same probability (hence S(t)∕N is the probability that a contacted individual is susceptible).
 
2
This implies that for z ∈ A N with β j(z) > 0, we have \(\beta _j(z) \geq \underline {\beta }(\lambda _0/N)\).
 
3
Here (and later) B(x, r) denotes the open ball around x with radius r.
 
4
We do not necessarily have \(\mu ^i\in V_{x,v_i}\) for all x ∈ B i; this might not be the case if x ∈ ∂A. In such a case \(V_{x,v_i}=\emptyset \) is possible, cf. the discussion about x = (1, 0) for the SIRS model below.
 
5
The constant − 1 can be replaced by any other constant − C (C > 0). Note that C 6 then depends on C with C 6 increasing in C.
 
6
Note that here, we also include those j with β j(x) > 0 and μ j = 0 for all μ ∈ V x,y.
 
7
Note that this result is not used for the proof of Theorem 7.4.
 
8
Note that B x depends on x only through β(x).
 
9
This theorem says that if \(F:X\times Y\to \mathbb {R}\), where X and Y  are convex, one the two being compact, F being quasi-concave and u.s.c. with respect to its first variable, quasi-convex and l.s.c. with respect to the second, then supxinfyF(x, y) =infysupxF(x, y).
 
10
Note that the Assumption (D5) is required here.
 
Literatur
1.
Zurück zum Zitat K.B. Athreya, P.E. Ney, Branching Processes (Springer, New York, 1972)CrossRef K.B. Athreya, P.E. Ney, Branching Processes (Springer, New York, 1972)CrossRef
2.
Zurück zum Zitat P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1999)CrossRef P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1999)CrossRef
3.
Zurück zum Zitat A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, Berlin, 2009)MATH A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, Berlin, 2009)MATH
4.
Zurück zum Zitat P. Dupuis, R.S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations (Wiley, New York, 1997)CrossRef P. Dupuis, R.S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations (Wiley, New York, 1997)CrossRef
5.
Zurück zum Zitat P. Dupuis, R.S. Ellis, A. Weiss, Large deviations for Markov processes with discontinuous statistics. I. General upper bounds. Ann. Probab. 19(3), 1280–1297 (1991)MATH P. Dupuis, R.S. Ellis, A. Weiss, Large deviations for Markov processes with discontinuous statistics. I. General upper bounds. Ann. Probab. 19(3), 1280–1297 (1991)MATH
6.
Zurück zum Zitat J. Feng, T.G. Kurtz, Large Deviations for Stochastic Processes (American Mathematical Society, Providence, 2006)CrossRef J. Feng, T.G. Kurtz, Large Deviations for Stochastic Processes (American Mathematical Society, Providence, 2006)CrossRef
7.
Zurück zum Zitat M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, Berlin, 2012)CrossRef M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, Berlin, 2012)CrossRef
8.
Zurück zum Zitat P. Kratz, E. Pardoux, B.S. Kepgnou, Numerical methods in the context of compartmental models in epidemiology. ESAIM Proc. 48, 169–189 (2015)MathSciNetCrossRef P. Kratz, E. Pardoux, B.S. Kepgnou, Numerical methods in the context of compartmental models in epidemiology. ESAIM Proc. 48, 169–189 (2015)MathSciNetCrossRef
9.
Zurück zum Zitat T.G. Kurtz, Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6(3), 223–240 (1978)MathSciNetCrossRef T.G. Kurtz, Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6(3), 223–240 (1978)MathSciNetCrossRef
10.
Zurück zum Zitat K. Pakdaman, M. Thieullen, G. Wainrib, Diffusion approximation of birth-death processes: comparison in terms of large deviations and exit points. Stat. Probab. Lett. 80(13–14), 1121–1127 (2010)MathSciNetCrossRef K. Pakdaman, M. Thieullen, G. Wainrib, Diffusion approximation of birth-death processes: comparison in terms of large deviations and exit points. Stat. Probab. Lett. 80(13–14), 1121–1127 (2010)MathSciNetCrossRef
11.
Zurück zum Zitat D. Revuz, M. Yor, Continuous Martingales and Brownian Motion (Springer, Berlin, 2005)MATH D. Revuz, M. Yor, Continuous Martingales and Brownian Motion (Springer, Berlin, 2005)MATH
12.
Zurück zum Zitat H. Roydon, Real Analysis (Collier-Macmillan, London, 1968) H. Roydon, Real Analysis (Collier-Macmillan, London, 1968)
13.
Zurück zum Zitat A. Shwartz, A. Weiss, Large Deviations for Performance Analysis (Chapman Hall, London, 1995)MATH A. Shwartz, A. Weiss, Large Deviations for Performance Analysis (Chapman Hall, London, 1995)MATH
14.
Metadaten
Titel
Large Deviations for Infectious Diseases Models
verfasst von
Peter Kratz
Etienne Pardoux
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-92420-5_7