Skip to main content

2018 | OriginalPaper | Buchkapitel

Large Eddy Simulation-Based Lattice Boltzmann Method with Different Collision Models

verfasst von : Mohamed Hamdi, Souheil Elalimi, Sassi Ben Nasrallah

Erschienen in: Exergy for A Better Environment and Improved Sustainability 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is of interest to discuss the analogies between ELB and LBM with turbulence models. This paper addresses the issue of incorporation of the subgrid turbulence model in the lattice Boltzmann equation (LBE). A lattice Boltzmann solver is implemented using various techniques, and the performance will be discussed. The numerical validity of the codes is tested against known fluid flow solutions, and a visual representation of the fluid flow is created. The simulations include lattice Boltzmann method with subgrid model and single-relaxation-time (SRT), multiple-relaxation-time (MRT), and entropic collision models (ELBM). We explore the behavior and accuracy of the proposed models on lid-driven square cavity at Reynolds number up to 10.000. Our results clearly show that the LES-MRT model remains the most effective in terms of accuracy and stability. Also our results highlight the subgrid features of the ELBE.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ansumali, S., Karlin, I.: Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E. 66(2), 026311 (2002)MathSciNetCrossRef Ansumali, S., Karlin, I.: Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E. 66(2), 026311 (2002)MathSciNetCrossRef
Zurück zum Zitat Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003)CrossRef Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003)CrossRef
Zurück zum Zitat Arcidiacono, S., Karlin, I.V., Mantzaras, J., Frouzakis, C.E.: Lattice Boltzmann model for the simulation of multicomponent mixtures. Phys. Rev. E. 76, 046703 (2007)CrossRef Arcidiacono, S., Karlin, I.V., Mantzaras, J., Frouzakis, C.E.: Lattice Boltzmann model for the simulation of multicomponent mixtures. Phys. Rev. E. 76, 046703 (2007)CrossRef
Zurück zum Zitat Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511 (1954)CrossRef Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511 (1954)CrossRef
Zurück zum Zitat Chen, S.: A large-eddy-based lattice Boltzmann model for turbulent flow simulation. Appl. Math. Comput. 215(2), 591–598 (2009) Chen, S.: A large-eddy-based lattice Boltzmann model for turbulent flow simulation. Appl. Math. Comput. 215(2), 591–598 (2009)
Zurück zum Zitat Chikatamarla, S.S., Ansumali, S., Karlin, I.V.: Grad’s approximation for missing data in lattice Boltzmann simulations. Europhys. Lett. 74(2), 215–221 (2006)MathSciNetCrossRef Chikatamarla, S.S., Ansumali, S., Karlin, I.V.: Grad’s approximation for missing data in lattice Boltzmann simulations. Europhys. Lett. 74(2), 215–221 (2006)MathSciNetCrossRef
Zurück zum Zitat D’Humieres, D., Irina, G., Manfred, K., Pierre, L., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. Series A-Math. Phys. Eng. Sci. 360(1792), 437–451 (2002)MathSciNetCrossRef D’Humieres, D., Irina, G., Manfred, K., Pierre, L., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. Series A-Math. Phys. Eng. Sci. 360(1792), 437–451 (2002)MathSciNetCrossRef
Zurück zum Zitat Deng, L., Zhang, Y., Wen, Y., Zhou, H.: A fractional-step thermal lattice Boltzmann model for high Peclet number flow. Comput. Math. Appl. 70(5), 1152–1161 (2015) Deng, L., Zhang, Y., Wen, Y., Zhou, H.: A fractional-step thermal lattice Boltzmann model for high Peclet number flow. Comput. Math. Appl. 70(5), 1152–1161 (2015)
Zurück zum Zitat Ding, Y., Kawahara, M.: Linear stability of incompressible fluid flow in a cavity using finite element method. Int. J. Numer. Methods Fluids. 27, 139–157 (1998)MathSciNetCrossRef Ding, Y., Kawahara, M.: Linear stability of incompressible fluid flow in a cavity using finite element method. Int. J. Numer. Methods Fluids. 27, 139–157 (1998)MathSciNetCrossRef
Zurück zum Zitat Dong, Y.-H., Sagaut, P., Marie, S.: Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method. Phys. Fluids. 20, 035104 (2008)CrossRef Dong, Y.-H., Sagaut, P., Marie, S.: Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method. Phys. Fluids. 20, 035104 (2008)CrossRef
Zurück zum Zitat Dubois, F., Lallemand, P., Tekitek, M.: On a superconvergent lattice Boltzmann boundary scheme. Comput. Math. Appl. 59(7), 2141–2149 (2010)MathSciNetCrossRef Dubois, F., Lallemand, P., Tekitek, M.: On a superconvergent lattice Boltzmann boundary scheme. Comput. Math. Appl. 59(7), 2141–2149 (2010)MathSciNetCrossRef
Zurück zum Zitat Eggels, J.G.M.: Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int. J. Heat Fluid Flow. 17(3), 307–323 (1996)CrossRef Eggels, J.G.M.: Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int. J. Heat Fluid Flow. 17(3), 307–323 (1996)CrossRef
Zurück zum Zitat Erturk, E., Corke, T.C., Gokcol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids. 48, 747–774 (2005)CrossRef Erturk, E., Corke, T.C., Gokcol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids. 48, 747–774 (2005)CrossRef
Zurück zum Zitat Ghia, U., Ghia, K.N., Shin, C.T.: High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRef Ghia, U., Ghia, K.N., Shin, C.T.: High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRef
Zurück zum Zitat Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28(11), 1171–1195 (2005)CrossRef Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28(11), 1171–1195 (2005)CrossRef
Zurück zum Zitat Ginzburg, I., Alder, P.M.: Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II. 4, 191–214 (1994) Ginzburg, I., Alder, P.M.: Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II. 4, 191–214 (1994)
Zurück zum Zitat Ginzburg, I., d’Humières, D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E. 68, 066614 (2002)MathSciNetCrossRef Ginzburg, I., d’Humières, D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E. 68, 066614 (2002)MathSciNetCrossRef
Zurück zum Zitat Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3(2), 427–478 (2008)MathSciNet Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3(2), 427–478 (2008)MathSciNet
Zurück zum Zitat Hachem, E., Rivaux, B., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element method for incompressible flows with high Reynolds number. J. Comput. Phys. 229, 8643–8665 (2010)MathSciNetCrossRef Hachem, E., Rivaux, B., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element method for incompressible flows with high Reynolds number. J. Comput. Phys. 229, 8643–8665 (2010)MathSciNetCrossRef
Zurück zum Zitat He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E. 56, 6811 (1997)CrossRef He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E. 56, 6811 (1997)CrossRef
Zurück zum Zitat Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice Boltzmann Subgrid model for high Reynolds number flows. Fields Inst. Comm. 6, 151–166 (1996)MathSciNetMATH Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice Boltzmann Subgrid model for high Reynolds number flows. Fields Inst. Comm. 6, 151–166 (1996)MathSciNetMATH
Zurück zum Zitat Karlin, I.V., Succi, S., Chikatamarla, S.S.: Comment on “Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations”. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 068701 (2011a)CrossRef Karlin, I.V., Succi, S., Chikatamarla, S.S.: Comment on “Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations”. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 068701 (2011a)CrossRef
Zurück zum Zitat Karlin, I., Asinari, P., Succi, S.: Matrix lattice Boltzmann reloaded. Phil. Trans. R. Soc. A. 369, 2202–2210 (2011b)MathSciNetCrossRef Karlin, I., Asinari, P., Succi, S.: Matrix lattice Boltzmann reloaded. Phil. Trans. R. Soc. A. 369, 2202–2210 (2011b)MathSciNetCrossRef
Zurück zum Zitat Keating, B., Vahala, G.: Entropic lattice Boltzmann representations required to recover Navier-Stokes flows. Phys. Rev. E. 75, 036712 (2007)MathSciNetCrossRef Keating, B., Vahala, G.: Entropic lattice Boltzmann representations required to recover Navier-Stokes flows. Phys. Rev. E. 75, 036712 (2007)MathSciNetCrossRef
Zurück zum Zitat Krafczyk, M., Tölke, J., Luo, L.S.: Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod. Phys. B. 17, 33–39 (2003)CrossRef Krafczyk, M., Tölke, J., Luo, L.S.: Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod. Phys. B. 17, 33–39 (2003)CrossRef
Zurück zum Zitat Lachowicz, M.: Links between microscopic and macroscopic descriptions. Multiscale Prob. Life Sci., Lecture Notes in Mathematics. 1940, 201–267 (2008) Lachowicz, M.: Links between microscopic and macroscopic descriptions. Multiscale Prob. Life Sci., Lecture Notes in Mathematics. 1940, 201–267 (2008)
Zurück zum Zitat Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E. 61, 6546 (2000)MathSciNetCrossRef Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E. 61, 6546 (2000)MathSciNetCrossRef
Zurück zum Zitat Lu, Z., Liao, Y., Qian, D., McLaughlin, J.B., Derksen, J.J., Kontomaris, K.: Large eddy simulations of a stirred tank using the lattice Boltzmann method on a Nonuniform grid. J. Comput. Phys. 181, 675–704 (2002)CrossRef Lu, Z., Liao, Y., Qian, D., McLaughlin, J.B., Derksen, J.J., Kontomaris, K.: Large eddy simulations of a stirred tank using the lattice Boltzmann method on a Nonuniform grid. J. Comput. Phys. 181, 675–704 (2002)CrossRef
Zurück zum Zitat Luo, L.S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E. 83(056710), 1–24 (2011) Luo, L.S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E. 83(056710), 1–24 (2011)
Zurück zum Zitat Malaspinas, O., Deville, M., Chopard, B.: Towards a physical interpretation of the entropic lattice Boltzmann method. Phys. Rev. E. 78, 066705 (2008) Malaspinas, O., Deville, M., Chopard, B.: Towards a physical interpretation of the entropic lattice Boltzmann method. Phys. Rev. E. 78, 066705 (2008)
Zurück zum Zitat Malaspinas, O., Sagaut, P.: Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model. Phys. Fluids. 23, 105103 (2011)CrossRef Malaspinas, O., Sagaut, P.: Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model. Phys. Fluids. 23, 105103 (2011)CrossRef
Zurück zum Zitat Mohamad, A.A.: Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer. Sure Print, Calgary (2007) Mohamad, A.A.: Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer. Sure Print, Calgary (2007)
Zurück zum Zitat Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Ann. Rev. 16, 99–137 (1984)MATH Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Ann. Rev. 16, 99–137 (1984)MATH
Zurück zum Zitat Sagaut, P.: Toward advanced subgrid models for lattice-Boltzmann-based large-eddy simulation: theoretical formulations. Comput. Math. Appl. 59(7), 2194–2199 (2010)MathSciNetCrossRef Sagaut, P.: Toward advanced subgrid models for lattice-Boltzmann-based large-eddy simulation: theoretical formulations. Comput. Math. Appl. 59(7), 2194–2199 (2010)MathSciNetCrossRef
Zurück zum Zitat Sauro, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation). Clarendon Press, Oxford (2001)MATH Sauro, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation). Clarendon Press, Oxford (2001)MATH
Zurück zum Zitat Schlatter, P., Stolz, S., Kleiser, L.: Large-eddy simulation of spatial transition in plane channel flow. J. Turbul. 7, 1–24 (2006)MathSciNetCrossRef Schlatter, P., Stolz, S., Kleiser, L.: Large-eddy simulation of spatial transition in plane channel flow. J. Turbul. 7, 1–24 (2006)MathSciNetCrossRef
Zurück zum Zitat Shua, C., Niua, X.D., Chewa, Y.T., Caib, Q.D.: A fractional step lattice Boltzmann method for simulating high Reynolds number flows. Math. Comput. Simul. 72, 201–205 (2006)MathSciNetCrossRef Shua, C., Niua, X.D., Chewa, Y.T., Caib, Q.D.: A fractional step lattice Boltzmann method for simulating high Reynolds number flows. Math. Comput. Simul. 72, 201–205 (2006)MathSciNetCrossRef
Zurück zum Zitat Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids. 11(7), 1699–1701 (1999)CrossRef Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids. 11(7), 1699–1701 (1999)CrossRef
Zurück zum Zitat Wang, J., Wang, D., Lallemand, P., Luo, L.-S.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math. Appl. 65, 262–286 (2013)MathSciNetCrossRef Wang, J., Wang, D., Lallemand, P., Luo, L.-S.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math. Appl. 65, 262–286 (2013)MathSciNetCrossRef
Zurück zum Zitat Weickert, M., Teike, G., Schmidt, O., Sommerfeld, M.: Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput. Math. Appl. 59(7), 2200–2214 (2010)MathSciNetCrossRef Weickert, M., Teike, G., Schmidt, O., Sommerfeld, M.: Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput. Math. Appl. 59(7), 2200–2214 (2010)MathSciNetCrossRef
Zurück zum Zitat Yasuda, T., Satofuka, N.: An improved entropic lattice Boltzmann model for parallel computation. Comput. Fluids. 45(1), 187–190 (2011)MathSciNetCrossRef Yasuda, T., Satofuka, N.: An improved entropic lattice Boltzmann model for parallel computation. Comput. Fluids. 45(1), 187–190 (2011)MathSciNetCrossRef
Metadaten
Titel
Large Eddy Simulation-Based Lattice Boltzmann Method with Different Collision Models
verfasst von
Mohamed Hamdi
Souheil Elalimi
Sassi Ben Nasrallah
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62572-0_43