Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2021

17.07.2021 | Original Research Article

Laser Alloying as an Effective Way to Fabricate NiTiPt Shape Memory Alloys

verfasst von: A. Shamsolhodaei, B. Panton, A. Michael, P. Changizian, Y. N. Zhou

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The formation of NiTiPt high-temperature shape memory alloy was examined using laser alloying of NiTi and PtIr alloys. In this regard, four different peak powers were implemented to study their effects on NiTiPt laser-fabricated materials. The lowest (1.0 kW) and highest (2.5 kW) peak powers were disregarded due to the lack of bonding and significant crack formation in the sample, respectively. The NiTiPt phase was successfully formed using the intermediary peak powers due to laser alloying. At a lower peak laser power (1.5 kW), the ternary NiTiPt alloy had a chemical composition that varied from less than 5at. pct to than 30at. pct Pt. At a higher peak power (2.0 kW), a more homogenous material was achieved with slightly higher than 30at. pct Pt. B2 and B19 phases of NiTiPt and various other binary phases were characterized inside the mixed zone (MZ), which were highly dependent on the Pt content of the fabricated NiTiPt. The variation of the chemical composition and formation of different phases resulted in the inhomogeneity of microhardness values in the low-power sample, whereas the high-power sample showed homogenous microhardness values within the mixed zone. The formation of the NiTiPt alloy was inferred from the presence of nanoscale p-phase precipitates which is the main characteristic of NiTiPt alloys, as characterized by Transmission Electron Microscopy (TEM) and Selected Area Diffraction (SAD) patterns. Finally, it was observed that the phase formed inside the mixed zone shifted the critical transformation temperature more than 200°C which also indicates that a high-temperature shape memory alloy was successfully fabricated. This study may open the door for fabricating high-temperature shape memory alloys using laser alloying.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat 1 K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.CrossRef 1 K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.CrossRef
2.
Zurück zum Zitat 2 M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri: Prog. Mater. Sci., 2012, vol. 57, pp. 911–46.CrossRef 2 M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri: Prog. Mater. Sci., 2012, vol. 57, pp. 911–46.CrossRef
3.
Zurück zum Zitat J. MohdJani, M. Leary, A. Subic, and M.A. Gibson: Mater. Des., 2014, vol. 56, pp. 1078–113.CrossRef J. MohdJani, M. Leary, A. Subic, and M.A. Gibson: Mater. Des., 2014, vol. 56, pp. 1078–113.CrossRef
4.
Zurück zum Zitat M. Mehrpouya and H. CheraghiBidsorkhi: Micro Nanosyst., 2016, vol. 8, pp. 79–91.CrossRef M. Mehrpouya and H. CheraghiBidsorkhi: Micro Nanosyst., 2016, vol. 8, pp. 79–91.CrossRef
5.
Zurück zum Zitat D.J. Hartl and D.C. Lagoudas (2007) Proc. Inst. Mech. Eng. Part G 221:535–52.CrossRef D.J. Hartl and D.C. Lagoudas (2007) Proc. Inst. Mech. Eng. Part G 221:535–52.CrossRef
6.
Zurück zum Zitat 6 M. Moshref-Javadi, M. Belbasi, S.H. Seyedein, and M.T. Salehi: J. Mater. Sci. Technol., 2014, vol. 30, pp. 280–4.CrossRef 6 M. Moshref-Javadi, M. Belbasi, S.H. Seyedein, and M.T. Salehi: J. Mater. Sci. Technol., 2014, vol. 30, pp. 280–4.CrossRef
7.
Zurück zum Zitat 7 D. Chovan, A. Gandhi, J. Butler, and S.A.M. Tofail: J. Magn. Magn. Mater., 2018, vol. 452, pp. 451–7.CrossRef 7 D. Chovan, A. Gandhi, J. Butler, and S.A.M. Tofail: J. Magn. Magn. Mater., 2018, vol. 452, pp. 451–7.CrossRef
8.
Zurück zum Zitat 8 D. Stoeckel, A. Pelton, and T. Duerig: Eur. Radiol., 2004, vol. 14, pp. 292–301.CrossRef 8 D. Stoeckel, A. Pelton, and T. Duerig: Eur. Radiol., 2004, vol. 14, pp. 292–301.CrossRef
9.
Zurück zum Zitat 9 D. Chovan, M. Nolan, and S.A.M. Tofail: J. Alloys Compd., 2015, vol. 630, pp. 54–9.CrossRef 9 D. Chovan, M. Nolan, and S.A.M. Tofail: J. Alloys Compd., 2015, vol. 630, pp. 54–9.CrossRef
10.
Zurück zum Zitat T.E. Buchheit, D.F. Susan, J.E. Massad, J.R. McElhanon, and R.D. Noebe: Metall. Mater. Trans. A 2016, vol. 47, pp. 1587–99.CrossRef T.E. Buchheit, D.F. Susan, J.E. Massad, J.R. McElhanon, and R.D. Noebe: Metall. Mater. Trans. A 2016, vol. 47, pp. 1587–99.CrossRef
11.
Zurück zum Zitat 11 A.C. Coppa, M. Kapoor, R. Noebe, and G.B. Thompson: Intermetallics, 2015, vol. 67, pp. 56–62.CrossRef 11 A.C. Coppa, M. Kapoor, R. Noebe, and G.B. Thompson: Intermetallics, 2015, vol. 67, pp. 56–62.CrossRef
12.
Zurück zum Zitat 12 K. V. Ramaiah, C.N. Saikrishna, M. Sujata, M. Madan, and S.K. Bhaumik: ISSS J. Micro Smart Syst., 2019, vol. 8, pp. 81–8.CrossRef 12 K. V. Ramaiah, C.N. Saikrishna, M. Sujata, M. Madan, and S.K. Bhaumik: ISSS J. Micro Smart Syst., 2019, vol. 8, pp. 81–8.CrossRef
13.
Zurück zum Zitat 13 Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M.J. Mills, and Y. Wang: Acta Mater., 2012, vol. 60, pp. 1514–27.CrossRef 13 Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M.J. Mills, and Y. Wang: Acta Mater., 2012, vol. 60, pp. 1514–27.CrossRef
14.
Zurück zum Zitat O. Rios, R. Noebe, T. Biles, A. Garg, A. Palczer, D. Scheiman, H.J. Seifert, and M. Kaufman: Smart Struct. Mater. Act. Mater. Behav. Mech., 2005, vol. 5761, p. 376. O. Rios, R. Noebe, T. Biles, A. Garg, A. Palczer, D. Scheiman, H.J. Seifert, and M. Kaufman: Smart Struct. Mater. Act. Mater. Behav. Mech., 2005, vol. 5761, p. 376.
15.
Zurück zum Zitat L. Odonoghue, A.A. Gandhi, J. Butler, W. Redington, P. Tiernan, T. Mcloughlin, J.C. Carlson, S. Lavelle, and S.A.M. Tofail (2010) Nucl. Instrum. Methods Phys. Res. Sect. B 268:287–90.CrossRef L. Odonoghue, A.A. Gandhi, J. Butler, W. Redington, P. Tiernan, T. Mcloughlin, J.C. Carlson, S. Lavelle, and S.A.M. Tofail (2010) Nucl. Instrum. Methods Phys. Res. Sect. B 268:287–90.CrossRef
16.
Zurück zum Zitat 16 O. Benafan, D.J. Gaydosh, R.D. Noebe, S. Qiu, and R. Vaidyanathan: Shape Mem. Superelasticity, 2016, vol. 2, pp. 337–46.CrossRef 16 O. Benafan, D.J. Gaydosh, R.D. Noebe, S. Qiu, and R. Vaidyanathan: Shape Mem. Superelasticity, 2016, vol. 2, pp. 337–46.CrossRef
17.
Zurück zum Zitat B. Panton, A. Pequegnat, and Y.N. Zhou: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3533–44.CrossRef B. Panton, A. Pequegnat, and Y.N. Zhou: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3533–44.CrossRef
18.
Zurück zum Zitat J.P. Oliveira, R.M. Miranda, and F.M. BrazFernandes: Prog. Mater. Sci., 2017, vol. 88, pp. 412–66.CrossRef J.P. Oliveira, R.M. Miranda, and F.M. BrazFernandes: Prog. Mater. Sci., 2017, vol. 88, pp. 412–66.CrossRef
19.
Zurück zum Zitat 19 M. Mehrpouya, A. Gisario, and M. Elahinia: J. Manuf. Process., 2018, vol. 31, pp. 162–86.CrossRef 19 M. Mehrpouya, A. Gisario, and M. Elahinia: J. Manuf. Process., 2018, vol. 31, pp. 162–86.CrossRef
21.
Zurück zum Zitat 21 N.J. Noolu, H.W. Kerr, Y. Zhou, and J. Xie: Mater. Sci. Eng. A, 2005, vol. 397, pp. 8–15.CrossRef 21 N.J. Noolu, H.W. Kerr, Y. Zhou, and J. Xie: Mater. Sci. Eng. A, 2005, vol. 397, pp. 8–15.CrossRef
22.
Zurück zum Zitat 22 Y. Yamabe-Mitarai, T. Aoyagi, and T. Abe: J. Alloys Compd., 2009, vol. 484, pp. 327–34.CrossRef 22 Y. Yamabe-Mitarai, T. Aoyagi, and T. Abe: J. Alloys Compd., 2009, vol. 484, pp. 327–34.CrossRef
23.
Zurück zum Zitat 23 S. Datta, M.S. Raza, P. Saha, D.K. Pratihar, and S. Datta: Mater. Manuf. Process., 2019, vol. 00, pp. 1–12. 23 S. Datta, M.S. Raza, P. Saha, D.K. Pratihar, and S. Datta: Mater. Manuf. Process., 2019, vol. 00, pp. 1–12.
24.
Zurück zum Zitat K.C. Mills, B.J. Keene, R.F. Brooks, and A. Shirali: Philos. Trans. R. Soc. A 1998, vol. 356, pp. 911–25.CrossRef K.C. Mills, B.J. Keene, R.F. Brooks, and A. Shirali: Philos. Trans. R. Soc. A 1998, vol. 356, pp. 911–25.CrossRef
25.
Zurück zum Zitat 25 B. Lin, K. Gall, H.J. Maier, and R. Waldron: Acta Biomater., 2009, vol. 5, pp. 257–67.CrossRef 25 B. Lin, K. Gall, H.J. Maier, and R. Waldron: Acta Biomater., 2009, vol. 5, pp. 257–67.CrossRef
26.
Zurück zum Zitat 26 R. Indhu, S. Soundarapandian, and L. Vijayaraghavan: J. Mater. Process. Technol., 2018, vol. 262, pp. 411–21.CrossRef 26 R. Indhu, S. Soundarapandian, and L. Vijayaraghavan: J. Mater. Process. Technol., 2018, vol. 262, pp. 411–21.CrossRef
27.
Zurück zum Zitat 27 L. Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R.D. Noebe, and M.J. Mills: Acta Mater., 2010, vol. 58, pp. 4660–73.CrossRef 27 L. Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R.D. Noebe, and M.J. Mills: Acta Mater., 2010, vol. 58, pp. 4660–73.CrossRef
28.
Zurück zum Zitat 28 F. Yang, R.D. Noebe, and M.J. Mills: Scr. Mater., 2013, vol. 69, pp. 713–5.CrossRef 28 F. Yang, R.D. Noebe, and M.J. Mills: Scr. Mater., 2013, vol. 69, pp. 713–5.CrossRef
29.
Zurück zum Zitat 29 O. Benafan, D.J. Gaydosh, R.D. Noebe, S. Qiu, and R. Vaidyanathan: Shape Mem. Superelasticity, 2016, vol. 2, pp. 337–46.CrossRef 29 O. Benafan, D.J. Gaydosh, R.D. Noebe, S. Qiu, and R. Vaidyanathan: Shape Mem. Superelasticity, 2016, vol. 2, pp. 337–46.CrossRef
30.
Zurück zum Zitat 30 M.I. Khan, A. Pequegnat, and Y.N. Zhou: Adv. Eng. Mater., 2013, vol. 15, pp. 386–93.CrossRef 30 M.I. Khan, A. Pequegnat, and Y.N. Zhou: Adv. Eng. Mater., 2013, vol. 15, pp. 386–93.CrossRef
31.
Zurück zum Zitat 31 A. Shamsolhodaei, Y.N. Zhou, and A. Michael: Sci. Technol. Weld. Join., 2019, vol. 24, pp. 706–12.CrossRef 31 A. Shamsolhodaei, Y.N. Zhou, and A. Michael: Sci. Technol. Weld. Join., 2019, vol. 24, pp. 706–12.CrossRef
Metadaten
Titel
Laser Alloying as an Effective Way to Fabricate NiTiPt Shape Memory Alloys
verfasst von
A. Shamsolhodaei
B. Panton
A. Michael
P. Changizian
Y. N. Zhou
Publikationsdatum
17.07.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06389-0

Weitere Artikel der Ausgabe 10/2021

Metallurgical and Materials Transactions A 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.