Skip to main content

2017 | OriginalPaper | Buchkapitel

Lattice-Based SNARGs and Their Application to More Efficient Obfuscation

verfasst von : Dan Boneh, Yuval Ishai, Amit Sahai, David J. Wu

Erschienen in: Advances in Cryptology – EUROCRYPT 2017

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Succinct non-interactive arguments (SNARGs) enable verifying \({{\mathsf {NP}}}\) computations with substantially lower complexity than that required for classical \({{\mathsf {NP}}}\) verification. In this work, we give the first lattice-based SNARG candidate with quasi-optimal succinctness (where the argument size is quasilinear in the security parameter). Further extension of our methods yields the first SNARG (from any assumption) that is quasi-optimal in terms of both prover overhead (polylogarithmic in the security parameter) as well as succinctness. Moreover, because our constructions are lattice-based, they plausibly resist quantum attacks. Central to our construction is a new notion of linear-only vector encryption which is a generalization of the notion of linear-only encryption introduced by Bitansky et al. (TCC 2013). We conjecture that variants of Regev encryption satisfy our new linear-only definition. Then, together with new information-theoretic approaches for building statistically-sound linear PCPs over small finite fields, we obtain the first quasi-optimal SNARGs.
We then show a surprising connection between our new lattice-based SNARGs and the concrete efficiency of program obfuscation. All existing obfuscation candidates currently rely on multilinear maps. Among the constructions that make black-box use of the multilinear map, obfuscating a circuit of even moderate depth (say, 100) requires a multilinear map with multilinearity degree in excess of \(2^{100}\). In this work, we show that an ideal obfuscation of both the decryption function in a fully homomorphic encryption scheme and a variant of the verification algorithm of our new lattice-based SNARG yields a general-purpose obfuscator for all circuits. Finally, we give some concrete estimates needed to obfuscate this “obfuscation-complete” primitive. We estimate that at 80-bits of security, a (black-box) multilinear map with \(\approx \!2^{12}\) levels of multilinearity suffices. This is over \(2^{80}\) times more efficient than existing candidates, and thus, represents an important milestone towards implementable program obfuscation for all circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
An “obfuscation-complete” primitive is a function whose ideal obfuscation (e.g., using tamper-proof hardware) can be used for obfuscating arbitrary functions. While we do not provide a provably secure instantiation of this primitive using \({i{\mathcal {O}}}\), it can be heuristically instantiated using existing \({i{\mathcal {O}}}\) candidates. Moreover, our obfuscation-complete primitive has the appealing property that it needs to be invoked exactly once regardless of the function being obfuscated. This is in contrast to alternative constructions [6, 50] where the obfuscated primitive needs to be invoked for each gate in the circuit or each step of a Turing machine evaluation.
 
2
Bitansky et al. [18] refer to this as “linear-only,” even though the prover is allowed to compute affine functions. To be consistent with their naming conventions, we will primarily write “linear-only” to refer to “affine-only”.
 
3
This is the main difference between our approach and that taken in [18]. By making the stronger assumption of linear-only vector encryption, we avoid the need for an extra consistency check, thus allowing for a direct compilation from linear PCPs to SNARGs. In contrast, [18] relies on the weaker assumption of linear-only encryption, but requires an extra step of first constructing a two-message linear interactive proof (incorporating the consistency check) from the linear PCP.
 
4
While it would be preferable to obtain a construction based on the hardness of standard lattice assumptions like learning with errors (LWE) [68], the separation results of Gentry and Wichs [46] suggest that stronger, non-falsifiable assumptions may be necessary to construct SNARGs.
 
5
Garg et al. [41] as well as Brakerski and Rothblum [30] show how to combine obfuscation for \({{\mathsf {NC^1}}}\) together with fully homomorphic encryption (FHE) and low-depth checkable proofs to bootstrap \({i{\mathcal {O}}}\) and VBB obfuscation from \({{\mathsf {NC^1}}}\) to \({{\mathsf {P}}/{\mathsf {poly}}}\).
 
6
This is fine from the SNARG perspective since the number of bits in the proof is still growing logarithmically in the running time of the computation.
 
7
To minimize the degree of multilinearity required, we require a composite-order ring that splits into \(\approx 200\) sub-rings. Instantiating our construction with the composite-order CLT multilinear map [33], the plaintext ring already supports the requisite number of sub-rings, so using CRT for parallelization does not incur any overhead.
 
8
In principle, homomorphic evaluation might require additional public parameters to be published by the setup algorithm. For simplicity of presentation, we will assume that no additional parameters are required, but all of our notions extend to the setting where the setup algorithm outputs a public evaluation key.
 
9
While we describe a SNARG for arithmetic circuit satisfiability (over \({\mathbb {Z}_{p}}\)), the problem of Boolean circuit satisfiability easily reduces to arithmetic circuit satisfiability with only constant overhead [18, Claim A.2].
 
10
Roughly, the knowledge property states that there exists an extractor such that for every affine strategy \(\varvec{\varPi }^*\) that convinces the verifier of some statement \({{\mathbf {x}}}\) with high probability, the extractor outputs a witness \({\mathbf {w}}\) such that \(({{\mathbf {x}}}, {\mathbf {w}}) \in {\mathcal {R}}\). The Hadamard LPCP from [9] also satisfies this stronger knowledge property.
 
11
More precisely, the ciphertexts are actually vectors of dimension \(n + \ell \), where n is the dimension of the lattice in the LWE problem. Currently, the most effective algorithms for solving LWE rely either on BKW-style [21, 54] or BKZ-based attacks [32, 70]. Based on our current understanding [26, 32, 54, 60], the best-known algorithms for LWE all require time \(2^{\varOmega (n / \log ^c n)}\) for some constant c. Thus, in terms of a concrete security parameter \(\lambda \), we set the lattice dimension to be \(n = {\widetilde{O}}(\lambda )\).
 
Literatur
1.
2.
3.
Zurück zum Zitat Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_15 CrossRef Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-47989-6_​15 CrossRef
4.
Zurück zum Zitat Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 152–181. Springer, Heidelberg (2017) Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 152–181. Springer, Heidelberg (2017)
5.
Zurück zum Zitat Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: ACM CCS (2014) Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: ACM CCS (2014)
6.
Zurück zum Zitat Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 162–172. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_9 Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 162–172. Springer, Heidelberg (2014). doi:10.​1007/​978-3-662-45608-8_​9
7.
Zurück zum Zitat Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_21 CrossRef Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46497-7_​21 CrossRef
8.
Zurück zum Zitat Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8_35 CrossRef Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). doi:10.​1007/​978-3-642-03356-8_​35 CrossRef
9.
Zurück zum Zitat Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. In: FOCS (1992) Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. In: FOCS (1992)
10.
Zurück zum Zitat Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_27 CrossRef Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-49896-5_​27 CrossRef
11.
Zurück zum Zitat Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_13 CrossRef Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-55220-5_​13 CrossRef
12.
Zurück zum Zitat Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_1 CrossRef Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.​1007/​3-540-44647-8_​1 CrossRef
13.
Zurück zum Zitat Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in nc\({^1}\). In: STOC (1986) Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in nc\({^1}\). In: STOC (1986)
14.
Zurück zum Zitat Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8_17 CrossRef Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.​1007/​978-3-540-28628-8_​17 CrossRef
15.
Zurück zum Zitat Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS (2012) Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS (2012)
16.
Zurück zum Zitat Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions. In: STOC (2014) Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions. In: STOC (2014)
17.
Zurück zum Zitat Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_16 CrossRef Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-32009-5_​16 CrossRef
18.
Zurück zum Zitat Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2_18 CrossRef Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-36594-2_​18 CrossRef
19.
20.
Zurück zum Zitat Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: FOCS (2015) Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: FOCS (2015)
21.
Zurück zum Zitat Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: STOC (2000) Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: STOC (2000)
22.
23.
Zurück zum Zitat Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption for restricted computations. In: ITCS (2012) Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption for restricted computations. In: ITCS (2012)
24.
25.
Zurück zum Zitat Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_27 CrossRef Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.​1007/​978-3-662-44371-2_​27 CrossRef
26.
Zurück zum Zitat Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. IACR Cryptology ePrint Archive 2016 (2016) Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. IACR Cryptology ePrint Archive 2016 (2016)
27.
Zurück zum Zitat Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_50 CrossRef Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-32009-5_​50 CrossRef
28.
Zurück zum Zitat Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS (2012) Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS (2012)
29.
Zurück zum Zitat Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC (2013) Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC (2013)
30.
Zurück zum Zitat Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_1 CrossRef Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-54242-8_​1 CrossRef
31.
Zurück zum Zitat Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS (2011) Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS (2011)
33.
Zurück zum Zitat Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_26 CrossRef Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40041-4_​26 CrossRef
34.
Zurück zum Zitat Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69407-6_21 CrossRef Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008). doi:10.​1007/​978-3-540-69407-6_​21 CrossRef
35.
Zurück zum Zitat Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1_36 Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992). doi:10.​1007/​3-540-46766-1_​36
36.
37.
Zurück zum Zitat Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_24 Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46800-5_​24
38.
Zurück zum Zitat Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7_12 Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi:10.​1007/​3-540-47721-7_​12
39.
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_1 CrossRef Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-38348-9_​1 CrossRef
40.
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_4 CrossRef Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-54242-8_​4 CrossRef
41.
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013) Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)
42.
Zurück zum Zitat Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_37 CrossRef Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-38348-9_​37 CrossRef
43.
44.
Zurück zum Zitat Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_28 CrossRef Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-29011-4_​28 CrossRef
45.
Zurück zum Zitat Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_5 CrossRef Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40041-4_​5 CrossRef
46.
Zurück zum Zitat Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC (2011) Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC (2011)
47.
Zurück zum Zitat Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection problem from designated verifier CS-proofs. IACR Cryptology ePrint Archive 2011 (2011) Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection problem from designated verifier CS-proofs. IACR Cryptology ePrint Archive 2011 (2011)
48.
Zurück zum Zitat Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: STOC (1982) Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: STOC (1982)
49.
Zurück zum Zitat Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC (1985) Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC (1985)
50.
Zurück zum Zitat Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2_19 CrossRef Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-11799-2_​19 CrossRef
52.
53.
Zurück zum Zitat Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC (1992) Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC (1992)
54.
Zurück zum Zitat Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_3 CrossRef Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-47989-6_​3 CrossRef
55.
Zurück zum Zitat Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: STOC (2015) Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: STOC (2015)
56.
Zurück zum Zitat Lewi, K., Malozemoff, A.J., Apon, D., Carmer, B., Foltzer, A., Wagner, D., Archer, D.W., Boneh, D., Katz, J., Raykova, M.: 5Gen: a framework for prototyping applications using multilinear maps and matrix branching programs. In: ACM CCS (2016) Lewi, K., Malozemoff, A.J., Apon, D., Carmer, B., Foltzer, A., Wagner, D., Archer, D.W., Boneh, D., Katz, J., Raykova, M.: 5Gen: a framework for prototyping applications using multilinear maps and matrix branching programs. In: ACM CCS (2016)
57.
Zurück zum Zitat Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_2 CrossRef Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-49890-3_​2 CrossRef
58.
Zurück zum Zitat Lin, H.: Indistinguishability obfuscation from DDH on 5-linear maps and locality-5 PRGs. IACR Cryptology ePrint Archive 2016 (2016) Lin, H.: Indistinguishability obfuscation from DDH on 5-linear maps and locality-5 PRGs. IACR Cryptology ePrint Archive 2016 (2016)
59.
Zurück zum Zitat Lin, R., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: FOCS (2016) Lin, R., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: FOCS (2016)
61.
Zurück zum Zitat Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9_10 CrossRef Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-28914-9_​10 CrossRef
62.
Zurück zum Zitat Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_1 CrossRef Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-13190-5_​1 CrossRef
66.
Zurück zum Zitat Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16 CrossRef Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi:10.​1007/​3-540-48910-X_​16 CrossRef
67.
Zurück zum Zitat Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_31 CrossRef Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.​1007/​978-3-540-85174-5_​31 CrossRef
68.
Zurück zum Zitat Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005) Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005)
69.
Zurück zum Zitat Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC (2014) Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC (2014)
70.
Zurück zum Zitat Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)MathSciNetCrossRefMATH Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)MathSciNetCrossRefMATH
71.
72.
Zurück zum Zitat Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS (1994)
74.
Zurück zum Zitat Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6_15 Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46803-6_​15
75.
Zurück zum Zitat Zippel, R.: Probabilistic algorithms for sparse polynomials. In: EUROSAM (1979) Zippel, R.: Probabilistic algorithms for sparse polynomials. In: EUROSAM (1979)
Metadaten
Titel
Lattice-Based SNARGs and Their Application to More Efficient Obfuscation
verfasst von
Dan Boneh
Yuval Ishai
Amit Sahai
David J. Wu
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56617-7_9

Premium Partner