Skip to main content
Erschienen in: Journal of Science Education and Technology 4/2019

08.01.2019

Learning Chemistry: Self-Efficacy, Chemical Understanding, and Graphing Skills

verfasst von: Shirly Avargil

Erschienen in: Journal of Science Education and Technology | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemistry curriculum should account for learning in context and understanding chemistry at the macroscopic and microscopic levels: the symbol level and the process level. The Taste of Chemistry learning module, developed for high school chemistry majors (students who choose to study the advanced chemistry program in high school), focuses on food-related chemistry, emphasizes learning in context and chemical understanding, and promotes the use of graphing skills. While learning, students are exposed to metacognitive prompts related to the four chemistry-understanding levels and to graphing skills. The objectives were to investigate (a) learning chemistry in context with metacognitive and graphing prompts as it relates to three students learning outcomes: self-efficacy, chemical understanding, and graphing skills and (b) the teachers’ role in promoting these learning outcomes. Research participants included two experimental groups and one comparison group (N = 370). The first experimental group studied the module, while being exposed to the metacognitive prompts via the module and explicit metacognitive instruction from their teachers. The second experimental group studied the module with the prompts embedded in it, but without explicit metacognitive instruction from their teachers. In the comparison group, students learned topics of organic chemistry and biochemistry, which was part of the traditional syllabus.
The experimental students’ self-efficacy, chemical understanding, and graphing skills improved; the net-gains were significantly higher than that of the comparison group. These gains were due to learning in context with the metacognitive prompts. Teachers were instrumental in promoting students’ application of metacognition. This research contributes to the body of knowledge of metacognition and chemical understanding as it bridges the two domains using metacognitive prompts related to the four chemistry-understanding levels and to graphing skills.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Avargil, S., Herscovitz, O., & Dori, Y. J. (2012). Teaching thinking skills in context-based learning: teachers’ challenges and assessment knowledge. Journal of Science Education and Technology, 21(2), 207–225.CrossRef Avargil, S., Herscovitz, O., & Dori, Y. J. (2012). Teaching thinking skills in context-based learning: teachers’ challenges and assessment knowledge. Journal of Science Education and Technology, 21(2), 207–225.CrossRef
Zurück zum Zitat Avargil, S., Herscovitz, O., & Dori, Y. J. (2013). Challenges in the transition to large-scale reform in chemical education. Thinking Skills and Creativity, 10, 189–207.CrossRef Avargil, S., Herscovitz, O., & Dori, Y. J. (2013). Challenges in the transition to large-scale reform in chemical education. Thinking Skills and Creativity, 10, 189–207.CrossRef
Zurück zum Zitat Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive strategies in science education. In: Y. Dori, Z. Mevarech, & D. Baker (Eds.), Cognition, metacognition, and culture in STEM education. Innovations in science education and technology (vol. 24). Cham: Springer. Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive strategies in science education. In: Y. Dori, Z. Mevarech, & D. Baker (Eds.), Cognition, metacognition, and culture in STEM education. Innovations in science education and technology (vol. 24). Cham: Springer.
Zurück zum Zitat Bandura, A. (1982). Self-efficacy mechanism in human agency. Am Psychol, 37(2), 122–147.CrossRef Bandura, A. (1982). Self-efficacy mechanism in human agency. Am Psychol, 37(2), 122–147.CrossRef
Zurück zum Zitat Chiu, J., & Linn, M. C. (2012). The role of self-monitoring in learning chemistry with dynamic visualizations. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education (pp. 133–163). Dordrecht, Netherlands: Springer.CrossRef Chiu, J., & Linn, M. C. (2012). The role of self-monitoring in learning chemistry with dynamic visualizations. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education (pp. 133–163). Dordrecht, Netherlands: Springer.CrossRef
Zurück zum Zitat De Jong, O., & Taber, K. S. (2015). The many faces of high school chemistry. In Handbook of research on science education (Vol. II, pp. 457–480). New York: Routledge. De Jong, O., & Taber, K. S. (2015). The many faces of high school chemistry. In Handbook of research on science education (Vol. II, pp. 457–480). New York: Routledge.
Zurück zum Zitat Dori, Y. J., & Sasson, I. (2008). Chemical understanding and graphing skills in an honors case-based computerized chemistry laboratory environment: the value of bidirectional visual and textual representations. J Res Sci Teach, 45(2), 219–250. https://doi.org/10.1002/tea.20197.CrossRef Dori, Y. J., & Sasson, I. (2008). Chemical understanding and graphing skills in an honors case-based computerized chemistry laboratory environment: the value of bidirectional visual and textual representations. J Res Sci Teach, 45(2), 219–250. https://​doi.​org/​10.​1002/​tea.​20197.CrossRef
Zurück zum Zitat Eilks, I., Rauch, F., Ralle, B., & Hofstein, A. (2013). How to allocate the chemistry curriculum between science and society. In I. Eilks & A. Hofstein (Eds.), Teaching chemistry—a studybook (pp. 1–36). Rotterdam, The Netherlands: SensePublishers.CrossRef Eilks, I., Rauch, F., Ralle, B., & Hofstein, A. (2013). How to allocate the chemistry curriculum between science and society. In I. Eilks & A. Hofstein (Eds.), Teaching chemistry—a studybook (pp. 1–36). Rotterdam, The Netherlands: SensePublishers.CrossRef
Zurück zum Zitat Field, A. (2009). Discovering statistics using SPSS. London, UK: Sage Publication. Field, A. (2009). Discovering statistics using SPSS. London, UK: Sage Publication.
Zurück zum Zitat Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. Am Psychol, 341, 906–911.CrossRef Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. Am Psychol, 341, 906–911.CrossRef
Zurück zum Zitat Gabel, D. (1998). The com plexity of chemistry and implications for teaching. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 233–248). Boston, MA: Kluwer Academic Publishers.CrossRef Gabel, D. (1998). The com plexity of chemistry and implications for teaching. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 233–248). Boston, MA: Kluwer Academic Publishers.CrossRef
Zurück zum Zitat Gilbert, J. K., & Treagust, D. F. (2009). Introduction: macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 1–8). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8872-8_1.CrossRef Gilbert, J. K., & Treagust, D. F. (2009). Introduction: macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 1–8). Dordrecht: Springer. https://​doi.​org/​10.​1007/​978-1-4020-8872-8_​1.CrossRef
Zurück zum Zitat Herscovitz, O., Kaberman, Z., Saar, L., & Dori, Y. J. (2012). The relationship between metacognition and the ability to pose questions in chemical education. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education (Vol. 40, pp. 165–195). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2132-6.CrossRef Herscovitz, O., Kaberman, Z., Saar, L., & Dori, Y. J. (2012). The relationship between metacognition and the ability to pose questions in chemical education. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education (Vol. 40, pp. 165–195). Dordrecht: Springer Netherlands. https://​doi.​org/​10.​1007/​978-94-007-2132-6.CrossRef
Zurück zum Zitat Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. J Comput Assist Learn, 7(2), 75–83.CrossRef Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. J Comput Assist Learn, 7(2), 75–83.CrossRef
Zurück zum Zitat Kozma, R., & Russell, J. (2005). Students becoming chemists: developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–145). Netherlands: Springer.CrossRef Kozma, R., & Russell, J. (2005). Students becoming chemists: developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–145). Netherlands: Springer.CrossRef
Zurück zum Zitat Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: developing curriculum materials that align with national standards and incorporate project-based pedagogy. Sci Educ, 92(1), 1–32. https://doi.org/10.1002/sce.CrossRef Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: developing curriculum materials that align with national standards and incorporate project-based pedagogy. Sci Educ, 92(1), 1–32. https://​doi.​org/​10.​1002/​sce.CrossRef
Zurück zum Zitat Marks, R., & Eilks, I. (2009). Promoting scientific literacy using a sociocritical and problem-oriented approach to chemistry teaching: concept, examples, experiences. International Journal of Environmental and Science Education, 4(3), 231–245. Marks, R., & Eilks, I. (2009). Promoting scientific literacy using a sociocritical and problem-oriented approach to chemistry teaching: concept, examples, experiences. International Journal of Environmental and Science Education, 4(3), 231–245.
Zurück zum Zitat NRC. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press. NRC. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press.
Zurück zum Zitat Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: a path analysis. J Educ Psychol, 86(2), 193–203.CrossRef Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: a path analysis. J Educ Psychol, 86(2), 193–203.CrossRef
Zurück zum Zitat Potgieter, M., Harding, A., & Engelbrecht, J. (2008). Transfer of algebraic and graphical thinking between mathematics and chemistry. J Res Sci Teach, 45(2), 197–218.CrossRef Potgieter, M., Harding, A., & Engelbrecht, J. (2008). Transfer of algebraic and graphical thinking between mathematics and chemistry. J Res Sci Teach, 45(2), 197–218.CrossRef
Zurück zum Zitat Wood, R., & Bandura, A. (1989). Impact of conceptions of ability on self-regulatory mechanisms and complex decision making. J Pers Soc Psychol, 56(3), 407–415.CrossRef Wood, R., & Bandura, A. (1989). Impact of conceptions of ability on self-regulatory mechanisms and complex decision making. J Pers Soc Psychol, 56(3), 407–415.CrossRef
Metadaten
Titel
Learning Chemistry: Self-Efficacy, Chemical Understanding, and Graphing Skills
verfasst von
Shirly Avargil
Publikationsdatum
08.01.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Science Education and Technology / Ausgabe 4/2019
Print ISSN: 1059-0145
Elektronische ISSN: 1573-1839
DOI
https://doi.org/10.1007/s10956-018-9765-x

Weitere Artikel der Ausgabe 4/2019

Journal of Science Education and Technology 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.