Skip to main content

2017 | Supplement | Buchkapitel

Learning Deep Features for Automated Placement of Correspondence Points on Ensembles of Complex Shapes

verfasst von : Praful Agrawal, Ross T. Whitaker, Shireen Y. Elhabian

Erschienen in: Medical Image Computing and Computer Assisted Intervention − MICCAI 2017

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Correspondence-based shape models are an enabling technology for various medical imaging applications that rely on statistical analysis of populations of anatomical shape. One strategy for automatic correspondence placement is to simultaneously learn a compact representation of the underlying anatomical variation in the shape space while capturing the geometric characteristics of individual shapes. The inherent geometric complexity and population-level shape variation in anatomical structures introduce significant challenges in finding optimal shape correspondence models. Existing approaches adopt iterative optimization schemes with objective functions derived from probabilistic modeling of shape space, e.g. entropy of Gaussian-distributed shape space, to find useful sets of dense correspondence on shape ensembles. Nonetheless, anatomical shape distributions can be far more complex than this Gaussian assumption, which entails linear shape variation. Recent works address this limitation by adopting an application-specific notion of correspondence through lifting positional data to a higher-dimensional feature space (e.g. sulcal depth, brain connectivity, and geodesic distance to anatomical landmarks), with the goal of simplifying the optimization problem. However, this typically requires a careful selection of hand-crafted features and their success heavily rely on expertise in finding such features consistently. This paper proposes an automated feature learning approach using deep convolutional neural networks for optimization of dense point correspondence on shape ensembles. The proposed method endows anatomical shapes with learned features that enhance the shape correspondence objective function to deal with complex objects and populations. Results demonstrate that deep learning based features perform better than methods that rely on position and compete favorably with hand-crafted features.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balestra, S., Schumann, S., Heverhagen, J., Nolte, L., Zheng, G.: Articulated statistical shape model-based 2D-3D reconstruction of a hip joint. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 128–137. Springer, Cham (2014). doi:10.1007/978-3-319-07521-1_14CrossRef Balestra, S., Schumann, S., Heverhagen, J., Nolte, L., Zheng, G.: Articulated statistical shape model-based 2D-3D reconstruction of a hip joint. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 128–137. Springer, Cham (2014). doi:10.​1007/​978-3-319-07521-1_​14CrossRef
2.
Zurück zum Zitat Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: NIPS, pp. 3189–3197 (2016) Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: NIPS, pp. 3189–3197 (2016)
3.
Zurück zum Zitat Bredbenner, T.L., Eliason, T.D., Potter, R.S., Mason, R.L., Havill, L.M., Nicolella, D.P.: Statistical shape modeling describes variation in tibia and femur surface geometry between control and incidence groups from the osteoarthritis initiative database. J. Biomech. 43(9), 1780–1786 (2010)CrossRef Bredbenner, T.L., Eliason, T.D., Potter, R.S., Mason, R.L., Havill, L.M., Nicolella, D.P.: Statistical shape modeling describes variation in tibia and femur surface geometry between control and incidence groups from the osteoarthritis initiative database. J. Biomech. 43(9), 1780–1786 (2010)CrossRef
4.
Zurück zum Zitat Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73273-0_28CrossRef Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007). doi:10.​1007/​978-3-540-73273-0_​28CrossRef
5.
Zurück zum Zitat Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR, vol. 1, pp. 539–546 (2005) Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR, vol. 1, pp. 539–546 (2005)
6.
Zurück zum Zitat Datar, M., Lyu, I., Kim, S.H., Cates, J., Styner, M.A., Whitaker, R.: Geodesic distances to landmarks for dense correspondence on ensembles of complex shapes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 19–26. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_3CrossRef Datar, M., Lyu, I., Kim, S.H., Cates, J., Styner, M.A., Whitaker, R.: Geodesic distances to landmarks for dense correspondence on ensembles of complex shapes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 19–26. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40763-5_​3CrossRef
7.
Zurück zum Zitat Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE TMI 21(5), 525–537 (2002)MATH Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE TMI 21(5), 525–537 (2002)MATH
8.
Zurück zum Zitat Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. MedIA 13(4), 543–563 (2009) Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. MedIA 13(4), 543–563 (2009)
9.
Zurück zum Zitat Meyer, M., Kirby, R.M., Whitaker, R.: Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE TVCG 13(6), 1704–1711 (2007) Meyer, M., Kirby, R.M., Whitaker, R.: Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE TVCG 13(6), 1704–1711 (2007)
10.
Zurück zum Zitat Oguz, I., Cates, J., Datar, M., Paniagua, B., Fletcher, T., Vachet, C., Styner, M., Whitaker, R.: Entropy-based particle correspondence for shape populations. IJCARS 11(7), 1221–1232 (2016) Oguz, I., Cates, J., Datar, M., Paniagua, B., Fletcher, T., Vachet, C., Styner, M., Whitaker, R.: Entropy-based particle correspondence for shape populations. IJCARS 11(7), 1221–1232 (2016)
11.
Zurück zum Zitat Oguz, I., Cates, J., Fletcher, T., Whitaker, R., Cool, D., Aylward, S., Styner, M.: Cortical correspondence using entropy-based particle systems and local features. In: ISBI, pp. 1637–1640 (2008) Oguz, I., Cates, J., Fletcher, T., Whitaker, R., Cool, D., Aylward, S., Styner, M.: Cortical correspondence using entropy-based particle systems and local features. In: ISBI, pp. 1637–1640 (2008)
12.
Zurück zum Zitat Oguz, I., Niethammer, M., Cates, J., Whitaker, R., Fletcher, T., Vachet, C., Styner, M.: Cortical correspondence with probabilistic fiber connectivity. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 651–663. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02498-6_54CrossRef Oguz, I., Niethammer, M., Cates, J., Whitaker, R., Fletcher, T., Vachet, C., Styner, M.: Cortical correspondence with probabilistic fiber connectivity. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 651–663. Springer, Heidelberg (2009). doi:10.​1007/​978-3-642-02498-6_​54CrossRef
13.
Zurück zum Zitat Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: IEEE 3DPVT, pp. 486–493 (2004) Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: IEEE 3DPVT, pp. 486–493 (2004)
14.
Zurück zum Zitat Sarkalkan, N., Weinans, H., Zadpoor, A.A.: Statistical shape and appearance models of bones. Bone 60, 129–140 (2014)CrossRef Sarkalkan, N., Weinans, H., Zadpoor, A.A.: Statistical shape and appearance models of bones. Bone 60, 129–140 (2014)CrossRef
15.
Zurück zum Zitat Shen, K.K., Fripp, J., Mériaudeau, F., Chételat, G., Salvado, O., Bourgeat, P.: Detecting global and local hippocampal shape changes in Alzheimer’s disease using statistical shape models. Neuroimage 59(3), 2155–2166 (2012)CrossRef Shen, K.K., Fripp, J., Mériaudeau, F., Chételat, G., Salvado, O., Bourgeat, P.: Detecting global and local hippocampal shape changes in Alzheimer’s disease using statistical shape models. Neuroimage 59(3), 2155–2166 (2012)CrossRef
16.
Zurück zum Zitat Styner, M., Oguz, I., Xu, S., Brechbühler, C., Pantazis, D., Levitt, J.J., Shenton, M.E., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. 1071, 242 (2006) Styner, M., Oguz, I., Xu, S., Brechbühler, C., Pantazis, D., Levitt, J.J., Shenton, M.E., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. 1071, 242 (2006)
Metadaten
Titel
Learning Deep Features for Automated Placement of Correspondence Points on Ensembles of Complex Shapes
verfasst von
Praful Agrawal
Ross T. Whitaker
Shireen Y. Elhabian
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-66182-7_22

Premium Partner