Skip to main content
Erschienen in: International Journal of Computer Vision 6-7/2019

27.02.2019

Learning from Longitudinal Face Demonstration—Where Tractable Deep Modeling Meets Inverse Reinforcement Learning

verfasst von: Chi Nhan Duong, Kha Gia Quach, Khoa Luu, T. Hoang Ngan Le, Marios Savvides, Tien D. Bui

Erschienen in: International Journal of Computer Vision | Ausgabe 6-7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a novel subject-dependent deep aging path (SDAP), which inherits the merits of both generative probabilistic modeling and inverse reinforcement learning to model the facial structures and the longitudinal face aging process of a given subject. The proposed SDAP is optimized using tractable log-likelihood objective functions with convolutional neural networks (CNNs) based deep feature extraction. Instead of applying a fixed aging development path for all input faces and subjects, SDAP is able to provide the most appropriate aging development path for individual subject that optimizes the reward aging formulation. Unlike previous methods that can take only one image as the input, SDAP further allows multiple images as inputs, i.e. all information of a subject at either the same or different ages, to produce the optimal aging path for the given subject. Finally, SDAP allows efficiently synthesizing in-the-wild aging faces. The proposed model is experimented in both tasks of face aging synthesis and cross-age face verification. The experimental results consistently show SDAP achieves the state-of-the-art performance on numerous face aging databases, i.e. FG-NET, MORPH, aging faces in the wild (AGFW), and cross-age celebrity dataset (CACD). Furthermore, we also evaluate the performance of SDAP on large-scale Megaface challenge to demonstrate the advantages of the proposed solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The results of other methods are provided in MegaFace website.
 
Literatur
Zurück zum Zitat Agustsson. E., Timofte, R., & Van Gool, L. (2017). Anchored regression networks applied to age estimation and super resolution. In IEEE International Conference on Computer Vision (ICCV), (pp. 1652–1661). Agustsson. E., Timofte, R., & Van Gool, L. (2017). Anchored regression networks applied to age estimation and super resolution. In IEEE International Conference on Computer Vision (ICCV), (pp. 1652–1661).
Zurück zum Zitat Angulu, R., & Tapamo, J. R. (2018). Adewumi AO (2018) Age estimation via face images: a survey. EURASIP Journal on Image and Video Processing, 1, 42.CrossRef Angulu, R., & Tapamo, J. R. (2018). Adewumi AO (2018) Age estimation via face images: a survey. EURASIP Journal on Image and Video Processing, 1, 42.CrossRef
Zurück zum Zitat Antipov, G., Baccouche, M., & Dugelay, JL. (2017). Face aging with conditional generative adversarial networks. arXiv preprint arXiv:1702.01983 Antipov, G., Baccouche, M., & Dugelay, JL. (2017). Face aging with conditional generative adversarial networks. arXiv preprint arXiv:​1702.​01983
Zurück zum Zitat Burt, D. M., & Perrett, D. I. (1995). Perception of age in adult caucasian male faces: Computer graphic manipulation of shape and colour information. In Proceedings of the Royal Society of London B: Biological Sciences, 259(1355), (pp. 137–143). Burt, D. M., & Perrett, D. I. (1995). Perception of age in adult caucasian male faces: Computer graphic manipulation of shape and colour information. In Proceedings of the Royal Society of London B: Biological Sciences, 259(1355), (pp. 137–143).
Zurück zum Zitat Chang, KY., Chen, CS., & Hung, YP. (2011). Ordinal hyperplanes ranker with cost sensitivities for age estimation. In CVPR, IEEE, (pp. 585–592). Chang, KY., Chen, CS., & Hung, YP. (2011). Ordinal hyperplanes ranker with cost sensitivities for age estimation. In CVPR, IEEE, (pp. 585–592).
Zurück zum Zitat Chen, BC., Chen, CS., & Hsu, WH. (2014). Cross-age reference coding for age-invariant face recognition and retrieval. In ECCV, (pp. 768–783). Chen, BC., Chen, CS., & Hsu, WH. (2014). Cross-age reference coding for age-invariant face recognition and retrieval. In ECCV, (pp. 768–783).
Zurück zum Zitat Chen, C., Yang, W., Wang, Y., Ricanek, K., & Luu, K. (2011). Facial feature fusion and model selection for age estimation. In IEEE Conference on Automatic Face and Gesture Recognition(FG), (pp. 1–7). Chen, C., Yang, W., Wang, Y., Ricanek, K., & Luu, K. (2011). Facial feature fusion and model selection for age estimation. In IEEE Conference on Automatic Face and Gesture Recognition(FG), (pp. 1–7).
Zurück zum Zitat Chen, S., Zhang, C., Dong, M., Le, J., & Rao, M. (2017). Using ranking-cnn for age estimation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Chen, S., Zhang, C., Dong, M., Le, J., & Rao, M. (2017). Using ranking-cnn for age estimation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Zurück zum Zitat Choi, S. E., Lee, Y. J., Lee, S. J., Park, K. R., & Kim, J. (2011). Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognition, 44(6), 1262–1281.CrossRefMATH Choi, S. E., Lee, Y. J., Lee, S. J., Park, K. R., & Kim, J. (2011). Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognition, 44(6), 1262–1281.CrossRefMATH
Zurück zum Zitat Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis & Machine Intelligence, 6, 681–685.CrossRef Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis & Machine Intelligence, 6, 681–685.CrossRef
Zurück zum Zitat Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking deep reinforcement learning for continuous control. In International Conference on Machine Learning, (pp. 1329–1338). Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking deep reinforcement learning for continuous control. In International Conference on Machine Learning, (pp. 1329–1338).
Zurück zum Zitat Duong, CN., Luu, K., Quach, KG., & Bui, TD. (2015). Beyond principal components: Deep Boltzmann machines for face modeling. In CVPR, IEEE, (pp. 4786–4794). Duong, CN., Luu, K., Quach, KG., & Bui, TD. (2015). Beyond principal components: Deep Boltzmann machines for face modeling. In CVPR, IEEE, (pp. 4786–4794).
Zurück zum Zitat Duong, CN., Luu, K., Quach, KG., Bui, TD. (2016). Longitudinal face modeling via temporal deep restricted boltzmann machines. In CVPR, (pp. 5772–5780). Duong, CN., Luu, K., Quach, KG., Bui, TD. (2016). Longitudinal face modeling via temporal deep restricted boltzmann machines. In CVPR, (pp. 5772–5780).
Zurück zum Zitat Duong, CN., Quach, KG., Luu, K., Le, N., & Savvides, M. (2017). Temporal non-volume preserving approach to facial age-progression and age-invariant face recognition. In The IEEE International Conference on Computer Vision (ICCV), (pp. 3755–3763). Duong, CN., Quach, KG., Luu, K., Le, N., & Savvides, M. (2017). Temporal non-volume preserving approach to facial age-progression and age-invariant face recognition. In The IEEE International Conference on Computer Vision (ICCV), (pp. 3755–3763).
Zurück zum Zitat Duong, C. N., Quach, K. G., Luu, K., Le, H. B., & Ricanek, K. (2011). Fine tuning age estimation with global and local facial features. In IEEE International Conference on Acoustics (pp. 2032–2035). Speech and Signal Processing: Prague, Czech Republic. Duong, C. N., Quach, K. G., Luu, K., Le, H. B., & Ricanek, K. (2011). Fine tuning age estimation with global and local facial features. In IEEE International Conference on Acoustics (pp. 2032–2035). Speech and Signal Processing: Prague, Czech Republic.
Zurück zum Zitat Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy optimization. In International Conference on Machine Learning, (pp. 49–58). Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy optimization. In International Conference on Machine Learning, (pp. 49–58).
Zurück zum Zitat Fu, Y., Guo, G., & Huang, T. S. (2010). Age synthesis and estimation via faces: A survey. IEEE transactions on pattern analysis and machine intelligence, 32(11), 1955–1976.CrossRef Fu, Y., Guo, G., & Huang, T. S. (2010). Age synthesis and estimation via faces: A survey. IEEE transactions on pattern analysis and machine intelligence, 32(11), 1955–1976.CrossRef
Zurück zum Zitat Geng, X., Smith-Miles, K., & Zhou, ZH. (2008). Facial age estimation by nonlinear aging pattern subspace. In Proceedings of the 16th ACM international conference on Multimedia, ACM, (pp. 721–724). Geng, X., Smith-Miles, K., & Zhou, ZH. (2008). Facial age estimation by nonlinear aging pattern subspace. In Proceedings of the 16th ACM international conference on Multimedia, ACM, (pp. 721–724).
Zurück zum Zitat Geng, X., Zhou, Z. H., & Smith-Miles, K. (2007). Automatic age estimation based on facial aging patterns. PAMI, 29(12), 2234–2240.CrossRef Geng, X., Zhou, Z. H., & Smith-Miles, K. (2007). Automatic age estimation based on facial aging patterns. PAMI, 29(12), 2234–2240.CrossRef
Zurück zum Zitat Guo, G., & Wang, X. (2012). A study on human age estimation under facial expression changes. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, (pp. 2547–2553). Guo, G., & Wang, X. (2012). A study on human age estimation under facial expression changes. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, (pp. 2547–2553).
Zurück zum Zitat Guo, G., & Zhang, C. (2014). A study on cross-population age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 4257–4263). Guo, G., & Zhang, C. (2014). A study on cross-population age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 4257–4263).
Zurück zum Zitat Guo, G., Mu, G., Fu, Y., & Huang, TS. (2009). Human age estimation using bio-inspired features. In Computer Vision and Pattern Recognition, 2009. CVPR, IEEE Conference on 2009, (pp. 112–119). Guo, G., Mu, G., Fu, Y., & Huang, TS. (2009). Human age estimation using bio-inspired features. In Computer Vision and Pattern Recognition, 2009. CVPR, IEEE Conference on 2009, (pp. 112–119).
Zurück zum Zitat Guo, G., Fu, Y., Dyer, C. R., & Huang, T. S. (2008). Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Transactions on Image Processing, 17(7), 1178–1188.MathSciNetCrossRef Guo, G., Fu, Y., Dyer, C. R., & Huang, T. S. (2008). Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Transactions on Image Processing, 17(7), 1178–1188.MathSciNetCrossRef
Zurück zum Zitat Han, H., Jain, A. K., Wang, F., Shan, S., & Chen, X. (2018). Heterogeneous face attribute estimation: A deep multi-task learning approach. IEEE transactions on pattern analysis and machine intelligence, 40(11), 2597–2609.CrossRef Han, H., Jain, A. K., Wang, F., Shan, S., & Chen, X. (2018). Heterogeneous face attribute estimation: A deep multi-task learning approach. IEEE transactions on pattern analysis and machine intelligence, 40(11), 2597–2609.CrossRef
Zurück zum Zitat Huo, Z., Yang, X., Xing, C., Zhou, Y., Hou, P., Lv, J., & Geng, X. (2016). Deep age distribution learning for apparent age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, (pp. 17–24). Huo, Z., Yang, X., Xing, C., Zhou, Y., Hou, P., Lv, J., & Geng, X. (2016). Deep age distribution learning for apparent age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, (pp. 17–24).
Zurück zum Zitat Kemelmacher Shlizerman, I., Suwajanakorn, S., & Seitz, SM. (2014). Illumination-aware age progression. In CVPR, IEEE, (pp. 3334–3341). Kemelmacher Shlizerman, I., Suwajanakorn, S., & Seitz, SM. (2014). Illumination-aware age progression. In CVPR, IEEE, (pp. 3334–3341).
Zurück zum Zitat Kemelmacher-Shlizerman, I., Seitz, SM., Miller, D., Brossard, E. (2016). The megaface benchmark: 1 million faces for recognition at scale. In CVPR, (pp. 4873–4882). Kemelmacher-Shlizerman, I., Seitz, SM., Miller, D., Brossard, E. (2016). The megaface benchmark: 1 million faces for recognition at scale. In CVPR, (pp. 4873–4882).
Zurück zum Zitat Kwon, Y. H., & da Vitoria, Lobo N. (1999). Age classification from facial images. CVIU, 74(1), 1–21. Kwon, Y. H., & da Vitoria, Lobo N. (1999). Age classification from facial images. CVIU, 74(1), 1–21.
Zurück zum Zitat Lanitis, A., Draganova, C., & Christodoulou, C. (2004). Comparing different classifiers for automatic age estimation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1), 621–628.CrossRef Lanitis, A., Draganova, C., & Christodoulou, C. (2004). Comparing different classifiers for automatic age estimation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1), 621–628.CrossRef
Zurück zum Zitat Lanitis, A., Taylor, C. J., & Cootes, T. F. (2002). Toward automatic simulation of aging effects on face images. PAMI, 24(4), 442–455.CrossRef Lanitis, A., Taylor, C. J., & Cootes, T. F. (2002). Toward automatic simulation of aging effects on face images. PAMI, 24(4), 442–455.CrossRef
Zurück zum Zitat Le, T. H. N., Seshadri, K., Luu, K., & Savvides, M. (2015). Facial aging and asymmetry decomposition based approaches to identification of twins. Pattern Recognition, 48(12), 3843–3856.CrossRef Le, T. H. N., Seshadri, K., Luu, K., & Savvides, M. (2015). Facial aging and asymmetry decomposition based approaches to identification of twins. Pattern Recognition, 48(12), 3843–3856.CrossRef
Zurück zum Zitat Levine, S., & Abbeel, P. (2014). Learning neural network policies with guided policy search under unknown dynamics. In Advances in Neural Information Processing Systems, (pp. 1071–1079). Levine, S., & Abbeel, P. (2014). Learning neural network policies with guided policy search under unknown dynamics. In Advances in Neural Information Processing Systems, (pp. 1071–1079).
Zurück zum Zitat Li, K., Xing, J., Su, C., Hu, W., Zhang, Y., & Maybank, S. (2018). Deep cost-sensitive and order-preserving feature learning for cross-population age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 399–408). Li, K., Xing, J., Su, C., Hu, W., Zhang, Y., & Maybank, S. (2018). Deep cost-sensitive and order-preserving feature learning for cross-population age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 399–408).
Zurück zum Zitat Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. arXiv preprint arXiv:1704.08063. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. arXiv preprint arXiv:​1704.​08063.
Zurück zum Zitat Lou, Z., Alnajar, F., Alvarez, J. M., Hu, N., & Gevers, T. (2018). Expression-invariant age estimation using structured learning. IEEE transactions on pattern analysis and machine intelligence, 40(2), 365–375.CrossRef Lou, Z., Alnajar, F., Alvarez, J. M., Hu, N., & Gevers, T. (2018). Expression-invariant age estimation using structured learning. IEEE transactions on pattern analysis and machine intelligence, 40(2), 365–375.CrossRef
Zurück zum Zitat Luu, K. (2010). Computer approaches for face aging problems. In The 23th Canadian Conference on Artificial Intelligence (CAI), Ottawa, Canada. Luu, K. (2010). Computer approaches for face aging problems. In The 23th Canadian Conference on Artificial Intelligence (CAI), Ottawa, Canada.
Zurück zum Zitat Luu, K., Ricanek Jr, K., Bui, TD., & Suen, CY. (2009a). Age estimation using active appearance models and support vector machine regression. In BTAS’09, IEEE, (pp. 1–5). Luu, K., Ricanek Jr, K., Bui, TD., & Suen, CY. (2009a). Age estimation using active appearance models and support vector machine regression. In BTAS’09, IEEE, (pp. 1–5).
Zurück zum Zitat Luu, K., Suen, C., Bui, T., & Ricanek, JK. (2009b). Automatic child-face age-progression based on heritability factors of familial faces. In BIdS, IEEE, (pp. 1–6). Luu, K., Suen, C., Bui, T., & Ricanek, JK. (2009b). Automatic child-face age-progression based on heritability factors of familial faces. In BIdS, IEEE, (pp. 1–6).
Zurück zum Zitat Niu, Z., Zhou, M., Wang, L., Gao, X., & Hua, G. (2016). Ordinal regression with multiple output cnn for age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 4920–4928). Niu, Z., Zhou, M., Wang, L., Gao, X., & Hua, G. (2016). Ordinal regression with multiple output cnn for age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 4920–4928).
Zurück zum Zitat Pan, H., Han, H., Shan, S., & Chen, X. (2018). Mean-variance loss for deep age estimation from a face. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 5285–5294). Pan, H., Han, H., Shan, S., & Chen, X. (2018). Mean-variance loss for deep age estimation from a face. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 5285–5294).
Zurück zum Zitat Patterson, E., Ricanek, K., Albert, M., & Boone, E. (2006). Automatic representation of adult aging in facial images. In Proceedings IASTED International Conference Visualization, Imaging, and Image Processing, (pp. 171–176). Patterson, E., Ricanek, K., Albert, M., & Boone, E. (2006). Automatic representation of adult aging in facial images. In Proceedings IASTED International Conference Visualization, Imaging, and Image Processing, (pp. 171–176).
Zurück zum Zitat Ricanek Jr, K., & Tesafaye, T. (2006). Morph: A longitudinal image database of normal adult age-progression. In FGR 2006, IEEE, (pp. 341–345). Ricanek Jr, K., & Tesafaye, T. (2006). Morph: A longitudinal image database of normal adult age-progression. In FGR 2006, IEEE, (pp. 341–345).
Zurück zum Zitat Rowland, D., Perrett, D., et al. (1995). Manipulating facial appearance through shape and color. Computer Graphics and Applications, IEEE, 15(5), 70–76.CrossRef Rowland, D., Perrett, D., et al. (1995). Manipulating facial appearance through shape and color. Computer Graphics and Applications, IEEE, 15(5), 70–76.CrossRef
Zurück zum Zitat Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B., & Yuille, AL. (2018). Deep regression forests for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 2304–2313). Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B., & Yuille, AL. (2018). Deep regression forests for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 2304–2313).
Zurück zum Zitat Shu, X., Tang, J., Lai, H., Liu, L., & Yan, S. (2015). Personalized age progression with aging dictionary. In ICCV, (pp. 3970–3978). Shu, X., Tang, J., Lai, H., Liu, L., & Yan, S. (2015). Personalized age progression with aging dictionary. In ICCV, (pp. 3970–3978).
Zurück zum Zitat Suo, J., Chen, X., Shan, S., Gao, W., & Dai, Q. (2012). A concatenational graph evolution aging model. PAMI, 34(11), 2083–2096.CrossRef Suo, J., Chen, X., Shan, S., Gao, W., & Dai, Q. (2012). A concatenational graph evolution aging model. PAMI, 34(11), 2083–2096.CrossRef
Zurück zum Zitat Suo, J., Zhu, S. C., Shan, S., & Chen, X. (2010). A compositional and dynamic model for face aging. PAMI, 32(3), 385–401.CrossRef Suo, J., Zhu, S. C., Shan, S., & Chen, X. (2010). A compositional and dynamic model for face aging. PAMI, 32(3), 385–401.CrossRef
Zurück zum Zitat Taylor, GW., & Hinton, GE. (2009). Factored conditional restricted boltzmann machines for modeling motion style. In Proceedings of the 26th Annual International Conference on Machine Learning, ACM, (pp. 1025–1032). Taylor, GW., & Hinton, GE. (2009). Factored conditional restricted boltzmann machines for modeling motion style. In Proceedings of the 26th Annual International Conference on Machine Learning, ACM, (pp. 1025–1032).
Zurück zum Zitat Tsai, M. H., Liao, Y. K., & Lin, I. C. (2014). Human face aging with guided prediction and detail synthesis. Multimedia Tools and Applications, 72(1), 801–824.CrossRef Tsai, M. H., Liao, Y. K., & Lin, I. C. (2014). Human face aging with guided prediction and detail synthesis. Multimedia Tools and Applications, 72(1), 801–824.CrossRef
Zurück zum Zitat Wang, W., Cui, Z., Yan, Y., Feng, J., Yan, S., Shu, X., & Sebe, N. (2016). Recurrent face aging. In CVPR, (pp. 2378–2386). Wang, W., Cui, Z., Yan, Y., Feng, J., Yan, S., Shu, X., & Sebe, N. (2016). Recurrent face aging. In CVPR, (pp. 2378–2386).
Zurück zum Zitat Wang, F., Han, H., Shan, S., & Chen, X. (2017). Deep multi-task learning for joint prediction of heterogeneous face attributes. In Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, IEEE, (pp. 173–179). Wang, F., Han, H., Shan, S., & Chen, X. (2017). Deep multi-task learning for joint prediction of heterogeneous face attributes. In Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, IEEE, (pp. 173–179).
Zurück zum Zitat Wang, Z., X Tang, WL., & Gao, S. (2018). Face aging with identity-preserved conditional generative adversarial networks. In CVPR. Wang, Z., X Tang, WL., & Gao, S. (2018). Face aging with identity-preserved conditional generative adversarial networks. In CVPR.
Zurück zum Zitat Xu, J., Luu, K., Savvides, M., Bui, TD., & Suen, CY. (2011). Investigating age invariant face recognition based on periocular biometrics. In International Joint Conference on Biometrics (IJCB), IEEE. Xu, J., Luu, K., Savvides, M., Bui, TD., & Suen, CY. (2011). Investigating age invariant face recognition based on periocular biometrics. In International Joint Conference on Biometrics (IJCB), IEEE.
Zurück zum Zitat Xu, F., Luu, K., & Savvides, M. (2015). Spartans: Single-sample periocular-based alignment-robust recognition technique applied to non-frontal scenarios. Trans on Image Processing (TIP), 24, 4780–4795.MathSciNetCrossRefMATH Xu, F., Luu, K., & Savvides, M. (2015). Spartans: Single-sample periocular-based alignment-robust recognition technique applied to non-frontal scenarios. Trans on Image Processing (TIP), 24, 4780–4795.MathSciNetCrossRefMATH
Zurück zum Zitat Yan, S., Liu, M., & Huang, TS. (2008). Extracting age information from local spatially flexible patches. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, IEEE, (pp. 737–740). Yan, S., Liu, M., & Huang, TS. (2008). Extracting age information from local spatially flexible patches. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, IEEE, (pp. 737–740).
Zurück zum Zitat Yang, X., Gao, BB., Xing, C., Huo, ZW., Wei, XS., Zhou, Y., Wu, J., & Geng, X. (2015). Deep label distribution learning for apparent age estimation. In Proceedings of the IEEE International Conference on Computer Vision Workshops, (pp. 102–108). Yang, X., Gao, BB., Xing, C., Huo, ZW., Wei, XS., Zhou, Y., Wu, J., & Geng, X. (2015). Deep label distribution learning for apparent age estimation. In Proceedings of the IEEE International Conference on Computer Vision Workshops, (pp. 102–108).
Zurück zum Zitat Yang, H., Huang, D., Wang, Y., Jain, AK. (2018). Learning face age progression: A pyramid architecture of gans. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Yang, H., Huang, D., Wang, Y., Jain, AK. (2018). Learning face age progression: A pyramid architecture of gans. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Zurück zum Zitat Yang, H., Huang, D., Wang, Y., Wang, H., & Tang, Y. (2016). Face aging effect simulation using hidden factor analysis joint sparse representation. TIP, 25(6), 2493–2507.MathSciNetMATH Yang, H., Huang, D., Wang, Y., Wang, H., & Tang, Y. (2016). Face aging effect simulation using hidden factor analysis joint sparse representation. TIP, 25(6), 2493–2507.MathSciNetMATH
Zurück zum Zitat Yan, S., Wang, H., Fu, Y., Yan, J., Tang, X., & Huang, T. S. (2009). Synchronized submanifold embedding for person-independent pose estimation and beyond. IEEE Transactions on Image Processing, 18(1), 202–210.MathSciNetCrossRefMATH Yan, S., Wang, H., Fu, Y., Yan, J., Tang, X., & Huang, T. S. (2009). Synchronized submanifold embedding for person-independent pose estimation and beyond. IEEE Transactions on Image Processing, 18(1), 202–210.MathSciNetCrossRefMATH
Zurück zum Zitat Yi, D., Lei, Z., Li, SZ. (2014). Age estimation by multi-scale convolutional network. In Asian conference on computer vision, Springer, (pp. 144–158). Yi, D., Lei, Z., Li, SZ. (2014). Age estimation by multi-scale convolutional network. In Asian conference on computer vision, Springer, (pp. 144–158).
Zurück zum Zitat Zhang, Y., & Yeung, DY. (2010). Multi-task warped Gaussian process for personalized age estimation. In CVPR, IEEE, (pp. 2622–2629). Zhang, Y., & Yeung, DY. (2010). Multi-task warped Gaussian process for personalized age estimation. In CVPR, IEEE, (pp. 2622–2629).
Zurück zum Zitat Zhang, Z., Song, Y., & Qi, H. (2017). Age progression/regression by conditional adversarial autoencoder. In CVPR. Zhang, Z., Song, Y., & Qi, H. (2017). Age progression/regression by conditional adversarial autoencoder. In CVPR.
Metadaten
Titel
Learning from Longitudinal Face Demonstration—Where Tractable Deep Modeling Meets Inverse Reinforcement Learning
verfasst von
Chi Nhan Duong
Kha Gia Quach
Khoa Luu
T. Hoang Ngan Le
Marios Savvides
Tien D. Bui
Publikationsdatum
27.02.2019
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 6-7/2019
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-019-01165-5

Weitere Artikel der Ausgabe 6-7/2019

International Journal of Computer Vision 6-7/2019 Zur Ausgabe

Premium Partner