Skip to main content
Erschienen in: Neural Processing Letters 3/2020

29.03.2020

Legendre Neural Network Method for Several Classes of Singularly Perturbed Differential Equations Based on Mapping and Piecewise Optimization Technology

verfasst von: Hongliang Liu, Baixue Xing, Zhen Wang, Lijuan Li

Erschienen in: Neural Processing Letters | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we develop a novel neural network model with mapping and piecewise optimization technology for several classes of the linear singularly perturbed initial value and boundary value differential equations with variable coefficients. First, the Legendre polynomials are selected as the activation function of the artificial neural network, the mapping technology is employed to transform the original uniform partition points and the piecewise optimization technology is used to improve the calculation accuracy. Then, the solution of the linear singularly perturbed differential equations is solved by using the extreme learning machine optimization algorithm. Finally, the numerical experiments show that the developed method can effectively improve the accuracy of the calculation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou ZY, Shen JH (2011) Delayed phenomenon of loss of stability of solutions in a second-order quasi-linear singularly perturbed boundary value problem with a turning point. Bound Value Probl 1:1–13MathSciNet Zhou ZY, Shen JH (2011) Delayed phenomenon of loss of stability of solutions in a second-order quasi-linear singularly perturbed boundary value problem with a turning point. Bound Value Probl 1:1–13MathSciNet
2.
Zurück zum Zitat Chen SL (2004) The asymptotic solutions for a class of singularly perturbed nonlinear equations. Pure Appl Math 20(4):344–349MATH Chen SL (2004) The asymptotic solutions for a class of singularly perturbed nonlinear equations. Pure Appl Math 20(4):344–349MATH
3.
Zurück zum Zitat Vasil’eva AB, Butuzov Writing VF, Ni MK, Translation LWZ (2008) Asymptotic expansions of singularly perturbed differential equations. Higher Education Press, Beijing (in chinese) Vasil’eva AB, Butuzov Writing VF, Ni MK, Translation LWZ (2008) Asymptotic expansions of singularly perturbed differential equations. Higher Education Press, Beijing (in chinese)
5.
Zurück zum Zitat Mo JQ, Chen SL (2000) The singularly perturbed nonlinear boundary value problem. J Math Res Expos 20(1):57–61MathSciNetMATH Mo JQ, Chen SL (2000) The singularly perturbed nonlinear boundary value problem. J Math Res Expos 20(1):57–61MathSciNetMATH
6.
Zurück zum Zitat Feng MC (2004) The estimation of solution for singularly perturbed problems of second degree equation via differential inequality. Pure Appl Math 20(2):134–139 (in chinese)MathSciNetMATH Feng MC (2004) The estimation of solution for singularly perturbed problems of second degree equation via differential inequality. Pure Appl Math 20(2):134–139 (in chinese)MathSciNetMATH
7.
Zurück zum Zitat Holmes M (2013) Introduction to perturbation methods., New York Holmes M (2013) Introduction to perturbation methods., New York
8.
Zurück zum Zitat Sun ML (2015) The study of muItiscale numericaI simulations for efficiently solving the singularly perturbed problems. Dissertation, Yangzhou University (in chinese) Sun ML (2015) The study of muItiscale numericaI simulations for efficiently solving the singularly perturbed problems. Dissertation, Yangzhou University (in chinese)
9.
Zurück zum Zitat Abrahamsson LR, Keller HB, Kreiss HO (1974) Difference approximations for singular perturbations of systems of ordinary differential equations. Numer Math 22(5):367–391MathSciNetMATH Abrahamsson LR, Keller HB, Kreiss HO (1974) Difference approximations for singular perturbations of systems of ordinary differential equations. Numer Math 22(5):367–391MathSciNetMATH
10.
Zurück zum Zitat Roos HG, Stynes M, Tobiska L (2008) Robust numerical methods for singularly perturbed differential equations. Springer, BerlinMATH Roos HG, Stynes M, Tobiska L (2008) Robust numerical methods for singularly perturbed differential equations. Springer, BerlinMATH
11.
Zurück zum Zitat Mbroh NA, Munyakazi JB (2019) A fitted operator finite difference method of lines for singularly perturbed parabolic convection–diffusion problems. Math Comput Simul 165(C):156–171MathSciNet Mbroh NA, Munyakazi JB (2019) A fitted operator finite difference method of lines for singularly perturbed parabolic convection–diffusion problems. Math Comput Simul 165(C):156–171MathSciNet
12.
Zurück zum Zitat Farhloul M, Mounim AS (2005) A mixed-hybrid finite element method for convection–diffusion problems. Appl Math Comput 171(2):1037–1047MathSciNetMATH Farhloul M, Mounim AS (2005) A mixed-hybrid finite element method for convection–diffusion problems. Appl Math Comput 171(2):1037–1047MathSciNetMATH
13.
Zurück zum Zitat Zhao YX, Xiao AG (2010) Variational iteration method for singular perturbation initial value problems. Comput Phys Commun 181(5):947–956MathSciNetMATH Zhao YX, Xiao AG (2010) Variational iteration method for singular perturbation initial value problems. Comput Phys Commun 181(5):947–956MathSciNetMATH
14.
Zurück zum Zitat Zhou GL (2016) Variational methods for several kinds of inverse problems and singular perturbation problems. Dissertation, Harbin Inst Technol (in Chinese) Zhou GL (2016) Variational methods for several kinds of inverse problems and singular perturbation problems. Dissertation, Harbin Inst Technol (in Chinese)
15.
Zurück zum Zitat Wang Y, Chen S, Wu X (2010) A rational spectral collocation method for solving a class of parameterized singular perturbation problems. J Comput Appl Math 233(10):2652–2660MathSciNetMATH Wang Y, Chen S, Wu X (2010) A rational spectral collocation method for solving a class of parameterized singular perturbation problems. J Comput Appl Math 233(10):2652–2660MathSciNetMATH
16.
Zurück zum Zitat Madden N, Stynes M (2003) A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction-diffusion problems. lMA J Numer Anal 23(4):627–644MathSciNetMATH Madden N, Stynes M (2003) A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction-diffusion problems. lMA J Numer Anal 23(4):627–644MathSciNetMATH
17.
Zurück zum Zitat Farrell P, Hemker PW, Shishkin GI et al (1996) Discrete approximations for singularly perturbed boundary value problems with parabolic layers I. J Comput Math 14(1):71–97MathSciNetMATH Farrell P, Hemker PW, Shishkin GI et al (1996) Discrete approximations for singularly perturbed boundary value problems with parabolic layers I. J Comput Math 14(1):71–97MathSciNetMATH
18.
Zurück zum Zitat Boglaev I (2006) Domain decomposition for a parabolic convection-diffusion problem. Numer Meth Partial Differ Equ 22(6):1361–1378MathSciNetMATH Boglaev I (2006) Domain decomposition for a parabolic convection-diffusion problem. Numer Meth Partial Differ Equ 22(6):1361–1378MathSciNetMATH
19.
Zurück zum Zitat Miller JJH, O”Riordan E, Shishkina GI (1998) Fitted mesh methods for problems with parabolic boundary layers. Math Proc R Ir Acad 98A(2):173–190MathSciNetMATH Miller JJH, O”Riordan E, Shishkina GI (1998) Fitted mesh methods for problems with parabolic boundary layers. Math Proc R Ir Acad 98A(2):173–190MathSciNetMATH
20.
Zurück zum Zitat Kopteva N (2007) Maximum norm a posteriori error estimates for a 1 D singularly perturbed semilincar rcactiorr diffusion problem. lMA J Numer Anal 27(3):576–592MATH Kopteva N (2007) Maximum norm a posteriori error estimates for a 1 D singularly perturbed semilincar rcactiorr diffusion problem. lMA J Numer Anal 27(3):576–592MATH
21.
Zurück zum Zitat Chadha NM, Kopteva N (2011) A robust grid equidistribution method for a one-dimensional singularly perturbed semilincar reaction–diffusion problem. IMA J Numer Anal 3(1):188–211MATH Chadha NM, Kopteva N (2011) A robust grid equidistribution method for a one-dimensional singularly perturbed semilincar reaction–diffusion problem. IMA J Numer Anal 3(1):188–211MATH
22.
Zurück zum Zitat Beckett U, Mackenzic JA (2000) Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl Numer Math 35(2):87–109MathSciNetMATH Beckett U, Mackenzic JA (2000) Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl Numer Math 35(2):87–109MathSciNetMATH
23.
Zurück zum Zitat Qiu Y, Sloan DM, Tang T (2000) Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution analysis of convergence. J Comput Appl Math 116(1):121–143MathSciNetMATH Qiu Y, Sloan DM, Tang T (2000) Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution analysis of convergence. J Comput Appl Math 116(1):121–143MathSciNetMATH
24.
Zurück zum Zitat Yang JM, Chen YP (2009) An efficient adaptive algorithm based on upwind difference for a singularly perturbed two-point boundary value problem. Numer Math A J Chin Univ 31(03):277–288 (In chinese) MathSciNetMATH Yang JM, Chen YP (2009) An efficient adaptive algorithm based on upwind difference for a singularly perturbed two-point boundary value problem. Numer Math A J Chin Univ 31(03):277–288 (In chinese) MathSciNetMATH
25.
Zurück zum Zitat Chen YP, Liu LB (2016) An adaptive grid method for singularly perturbed time-dependent convection–diffusion problems. Commun Comput Phys 20(5):1340–1358MathSciNetMATH Chen YP, Liu LB (2016) An adaptive grid method for singularly perturbed time-dependent convection–diffusion problems. Commun Comput Phys 20(5):1340–1358MathSciNetMATH
26.
Zurück zum Zitat Bakhvalov NS (1969) Towards optimization of methods for solving boundary value problems in the presence of boundary layers. Zh Vychisl Mat Mat Fiz 9:841–859 (In Russian) Bakhvalov NS (1969) Towards optimization of methods for solving boundary value problems in the presence of boundary layers. Zh Vychisl Mat Mat Fiz 9:841–859 (In Russian)
27.
Zurück zum Zitat Shishkin GI (1990) Grid approximation of singularly perturbed elliptic and parabolic equations. Keldysh Institute, Moscow (In Russian) Shishkin GI (1990) Grid approximation of singularly perturbed elliptic and parabolic equations. Keldysh Institute, Moscow (In Russian)
28.
Zurück zum Zitat Linß T (1999) An upwind difference scheme on a novel Shishkinrpe mesh for a linear convection–diffusion problem. J Comput Appl Math 110(1):93–104MathSciNetMATH Linß T (1999) An upwind difference scheme on a novel Shishkinrpe mesh for a linear convection–diffusion problem. J Comput Appl Math 110(1):93–104MathSciNetMATH
29.
Zurück zum Zitat Linß T (2000) Analysis of a Galerkin finite element Shishkin mesh for a linear convection–diffusion method on a Bakhvalov-problem. IMA J Numer Anal 20(4):621–632MathSciNetMATH Linß T (2000) Analysis of a Galerkin finite element Shishkin mesh for a linear convection–diffusion method on a Bakhvalov-problem. IMA J Numer Anal 20(4):621–632MathSciNetMATH
30.
Zurück zum Zitat Fu XY (2010) The boundary value problems for sewnd-order ordinary differential equations in Banach spaces and the synchronization of fuzzy cellular neural networks. Dissertation, Shanghai Normal University (In chinese) Fu XY (2010) The boundary value problems for sewnd-order ordinary differential equations in Banach spaces and the synchronization of fuzzy cellular neural networks. Dissertation, Shanghai Normal University (In chinese)
31.
Zurück zum Zitat Ahmad J, Masoumeh M, Dumitru B (2017) Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput Appl 28(4):765 Ahmad J, Masoumeh M, Dumitru B (2017) Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput Appl 28(4):765
32.
Zurück zum Zitat Meade A, Fernandez A (1994) The numerical solution of linear ordinary differential equations by feedforward neural networks. Math Comput Model 19(12):1–25MathSciNetMATH Meade A, Fernandez A (1994) The numerical solution of linear ordinary differential equations by feedforward neural networks. Math Comput Model 19(12):1–25MathSciNetMATH
33.
Zurück zum Zitat Li JY, Luo SW, Qi YJ, Huang YP (2002) Numerical solution of differential equations by radial basis function neural networks. In: International joint conference on neural networks, IEEE Li JY, Luo SW, Qi YJ, Huang YP (2002) Numerical solution of differential equations by radial basis function neural networks. In: International joint conference on neural networks, IEEE
34.
Zurück zum Zitat Rizaner FB, Rizaner A (2017) Approximate solutions of initial value problems for ordinary differential equations using radial basis function networks. Neural Process Lett 48(2):1063–1071 Rizaner FB, Rizaner A (2017) Approximate solutions of initial value problems for ordinary differential equations using radial basis function networks. Neural Process Lett 48(2):1063–1071
35.
Zurück zum Zitat Xu LY, Hui W, Zeng ZZ (2007) The Algorithm of neural networks on the initial value problems in ordinary differential equations. In: Conference on industrial electronics & applications, IEEE Xu LY, Hui W, Zeng ZZ (2007) The Algorithm of neural networks on the initial value problems in ordinary differential equations. In: Conference on industrial electronics & applications, IEEE
37.
Zurück zum Zitat Mall S, Chakraverty S (2016) Application of Legendre neural network for solving ordinary differential equations. Appl Soft Comput 43:347–356 Mall S, Chakraverty S (2016) Application of Legendre neural network for solving ordinary differential equations. Appl Soft Comput 43:347–356
38.
Zurück zum Zitat Puffer F, Tetzlaff R, Wolf D (1995) A learning algorithm for cellular neural networks (CNN) solving nonlinear partial differential equations. In: Ursi international symposium on signals, IEEE Puffer F, Tetzlaff R, Wolf D (1995) A learning algorithm for cellular neural networks (CNN) solving nonlinear partial differential equations. In: Ursi international symposium on signals, IEEE
39.
Zurück zum Zitat Shirvany Y, Hayati M, Moradian R (2009) Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl Soft Comput 9(1):20–29 Shirvany Y, Hayati M, Moradian R (2009) Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl Soft Comput 9(1):20–29
40.
Zurück zum Zitat Li J, Luo S, Qi Y, Huang Y (2003) Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Netw Off J Int Neural Netw Soc 16(5):729–734 Li J, Luo S, Qi Y, Huang Y (2003) Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Netw Off J Int Neural Netw Soc 16(5):729–734
41.
Zurück zum Zitat Zjavka L, Pedrycz W (2016) Constructing general partial differential equations using polynomial and neural networks. Neural Netw 73:58–69MATH Zjavka L, Pedrycz W (2016) Constructing general partial differential equations using polynomial and neural networks. Neural Netw 73:58–69MATH
42.
Zurück zum Zitat Ramuhalli P, Udpa L, Udpa SS (2005) Finite-element neural networks for solving differential equations. IEEE Trans Neural Netw 16(6):1381–1392 Ramuhalli P, Udpa L, Udpa SS (2005) Finite-element neural networks for solving differential equations. IEEE Trans Neural Netw 16(6):1381–1392
43.
Zurück zum Zitat Mall S, Chakraverty S (2017) Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett 45(3):825–840 Mall S, Chakraverty S (2017) Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett 45(3):825–840
45.
Zurück zum Zitat Ghasemi S, Effati S (2018) An artificial neural network for solving distributed optimal control of the poisson’s equation. Neural Process Lett 49(1):159–175 Ghasemi S, Effati S (2018) An artificial neural network for solving distributed optimal control of the poisson’s equation. Neural Process Lett 49(1):159–175
46.
Zurück zum Zitat Lucie PA, Peter VDV (2001) Neural network method for solving partial differential equations. Neural Process Lett 14(3):261–271MATH Lucie PA, Peter VDV (2001) Neural network method for solving partial differential equations. Neural Process Lett 14(3):261–271MATH
47.
Zurück zum Zitat Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37(2):189–205 Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37(2):189–205
48.
Zurück zum Zitat Shen Y, Miao P, Huang Y, Shen Y (2015) Finite-time stability and its application for solving time-varying sylvester equation by recurrent neural network. Neural Process Lett 42(3):763–784 Shen Y, Miao P, Huang Y, Shen Y (2015) Finite-time stability and its application for solving time-varying sylvester equation by recurrent neural network. Neural Process Lett 42(3):763–784
49.
Zurück zum Zitat He S, Reif K, Unbehauen R (1997) Solving Riccati differential equations with multilayer neural networks. In: Conference on decision & control, IEEE He S, Reif K, Unbehauen R (1997) Solving Riccati differential equations with multilayer neural networks. In: Conference on decision & control, IEEE
50.
Zurück zum Zitat Kumaresan N (2012) Solution of generalized matrix Riccati differential equation for indefinite stochastic linear quadratic singular fuzzy system with cross-term using neural networks. Neural Comput Appl 21(3):497–503 Kumaresan N (2012) Solution of generalized matrix Riccati differential equation for indefinite stochastic linear quadratic singular fuzzy system with cross-term using neural networks. Neural Comput Appl 21(3):497–503
51.
Zurück zum Zitat Balasubramaniam P, Samath JA, Kumaresan N, Kumar AVA (2006) Solution of matrix Riccati differential equation for the linear quadratic singular system using neural networks. Appl Math Comput 182(2):1832–1839MathSciNetMATH Balasubramaniam P, Samath JA, Kumaresan N, Kumar AVA (2006) Solution of matrix Riccati differential equation for the linear quadratic singular system using neural networks. Appl Math Comput 182(2):1832–1839MathSciNetMATH
52.
Zurück zum Zitat Muhammad AZR, Muhammad AM, Raza S (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model 39(10–11):3075–3093MathSciNetMATH Muhammad AZR, Muhammad AM, Raza S (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model 39(10–11):3075–3093MathSciNetMATH
53.
Zurück zum Zitat Pakdaman M, Ahmadian A, Effati S, Salahshour S, Baleanu D (2017) Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl Math Comput 293:81–95MathSciNetMATH Pakdaman M, Ahmadian A, Effati S, Salahshour S, Baleanu D (2017) Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl Math Comput 293:81–95MathSciNetMATH
54.
Zurück zum Zitat Asmat A, Oyoon AR, Najeeb AK (2018) A single layer functional link artificial neural network based on Chebyshev polynomials for neural evaluations of nonlinear nth order fuzzy differential equations. Ann West Univ Timis-Math Comput Sci 56(1):3–22 Asmat A, Oyoon AR, Najeeb AK (2018) A single layer functional link artificial neural network based on Chebyshev polynomials for neural evaluations of nonlinear nth order fuzzy differential equations. Ann West Univ Timis-Math Comput Sci 56(1):3–22
55.
Zurück zum Zitat Effati S, Pakdaman M (2010) Artificial neural network approach for solving fuzzy differential equations. Inf Sci 180(8):1434–1457MathSciNetMATH Effati S, Pakdaman M (2010) Artificial neural network approach for solving fuzzy differential equations. Inf Sci 180(8):1434–1457MathSciNetMATH
56.
Zurück zum Zitat Mosleh M, Otadi M (2012) Simulation and evaluation of fuzzy differential equations by fuzzy neural network. Appl Soft Comput 12(9):2817–2827 Mosleh M, Otadi M (2012) Simulation and evaluation of fuzzy differential equations by fuzzy neural network. Appl Soft Comput 12(9):2817–2827
57.
Zurück zum Zitat Xie Z, Kulasiri D, Samarasinghe S, Rajanayaka C (2007) The estimation of parameters for stochastic differential equations using neural networks. Inverse Probl Sci Eng 15(6):629–641MathSciNetMATH Xie Z, Kulasiri D, Samarasinghe S, Rajanayaka C (2007) The estimation of parameters for stochastic differential equations using neural networks. Inverse Probl Sci Eng 15(6):629–641MathSciNetMATH
58.
Zurück zum Zitat Lazovskaya TV, Tarkhov DA (2015) Fresh approaches to the construction of parameterized neural network solutions of a stiff differential equation. St Petersb Polytech Univ J Phys Math 1(2):192–198 Lazovskaya TV, Tarkhov DA (2015) Fresh approaches to the construction of parameterized neural network solutions of a stiff differential equation. St Petersb Polytech Univ J Phys Math 1(2):192–198
59.
Zurück zum Zitat Chedjou JC, Kyamakya K, Latif MA, Khan UA, Moussa I, Tuan DT (2009) Solving stiff ordinary differential equations and partial differential equations using analog computing based on cellular neural networks. In: International workshop on nonlinear dynamics and synchronization Chedjou JC, Kyamakya K, Latif MA, Khan UA, Moussa I, Tuan DT (2009) Solving stiff ordinary differential equations and partial differential equations using analog computing based on cellular neural networks. In: International workshop on nonlinear dynamics and synchronization
60.
Zurück zum Zitat Zhao Y, Lu Q, Feng Z, Xia Y (2012) Delay differential equations under nonlinear impulsive control and applications to neural network models. J Syst Sci Complex 25(4):707–719MathSciNetMATH Zhao Y, Lu Q, Feng Z, Xia Y (2012) Delay differential equations under nonlinear impulsive control and applications to neural network models. J Syst Sci Complex 25(4):707–719MathSciNetMATH
61.
Zurück zum Zitat Yang Z, Lan J, Wu YJ (2019) On solutions to several classes of differential-algebraic equations based on artificial neural networks. Appl Math Mech 40(02):115–126 (In chinese) Yang Z, Lan J, Wu YJ (2019) On solutions to several classes of differential-algebraic equations based on artificial neural networks. Appl Math Mech 40(02):115–126 (In chinese)
62.
Zurück zum Zitat Kozlov DS, Tiumentsev YV (2018) Neural network based semi-empirical models for dynamical systems represented by differential-algebraic equations of index 2. Procedia Comput Sci 123:252–257 Kozlov DS, Tiumentsev YV (2018) Neural network based semi-empirical models for dynamical systems represented by differential-algebraic equations of index 2. Procedia Comput Sci 123:252–257
63.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501 Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501
64.
Zurück zum Zitat Wang LL, Shen J (2005) Error analysis for mapped jacobi spectral methods. J Sci Comput 24(2):183–218MathSciNetMATH Wang LL, Shen J (2005) Error analysis for mapped jacobi spectral methods. J Sci Comput 24(2):183–218MathSciNetMATH
65.
Zurück zum Zitat Huang C, Wang LL (2019) An accurate spectral method for the transverse magnetic mode of Maxwell equations in Cole-Cole dispersive media. Adv Comput Math 45(2):707–734MathSciNetMATH Huang C, Wang LL (2019) An accurate spectral method for the transverse magnetic mode of Maxwell equations in Cole-Cole dispersive media. Adv Comput Math 45(2):707–734MathSciNetMATH
66.
Zurück zum Zitat Cao J, Lin Z, Huang GB (2011) Composite function wavelet neural networks with differential evolution and extreme learning machine. Neural Process Lett 33(3):251–265 Cao J, Lin Z, Huang GB (2011) Composite function wavelet neural networks with differential evolution and extreme learning machine. Neural Process Lett 33(3):251–265
67.
Zurück zum Zitat Zhao YX (2010) Stability analysis and numerical analysis for singular perturbation initial value problems. Dissertation, Xiangtan University (in chinese) Zhao YX (2010) Stability analysis and numerical analysis for singular perturbation initial value problems. Dissertation, Xiangtan University (in chinese)
69.
Zurück zum Zitat Holmes MH (2009) Introduction to the foundations of applied mathematics. Texts Appl Math 56:60–62MathSciNetMATH Holmes MH (2009) Introduction to the foundations of applied mathematics. Texts Appl Math 56:60–62MathSciNetMATH
Metadaten
Titel
Legendre Neural Network Method for Several Classes of Singularly Perturbed Differential Equations Based on Mapping and Piecewise Optimization Technology
verfasst von
Hongliang Liu
Baixue Xing
Zhen Wang
Lijuan Li
Publikationsdatum
29.03.2020
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2020
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-020-10232-9

Weitere Artikel der Ausgabe 3/2020

Neural Processing Letters 3/2020 Zur Ausgabe

Neuer Inhalt