Skip to main content
Erschienen in: Optical Memory and Neural Networks 4/2023

01.12.2023

Lessen Pressure Drop and Forecasting Thermal Performance in U-Tube Heat Exchanger Using Chimp Optimization and Deep Belief Neural Network

verfasst von: Shailandra Kumar Prasad, Mrityunjay Kumar Sinha

Erschienen in: Optical Memory and Neural Networks | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the chemical, pharmaceutical, and petroleum industries, Shell and U-Tube Heat Exchangers (STHX) were extensively utilized. Baffles must be positioned at the right distance and angle to increase the heat exchangers' capacity to convey heat and, as a result, lower pressure in the shell. The rate of heat transfer in an STHX has been improved, and pressure drop has been reduced using a variety of models. But those methods are not provided satisfactory pressure drop reduction. In the proposed model, an optimal Unilateral Ladder-Type Helical Baffles (ULHB) design and intelligent performance prediction system based U-tube heat exchanger was designed to reduce the pressure drop as well as predict the heat exchanger performance. The shell and tubes were made up of steel and copper material, respectively. A baffle was placed above tubes to barrier the flow of cold water. The design of the baffle was accomplished by using Chimp Optimization Algorithm (ChOA) and is motivated by the hunting behaviour of chimpanzees. After designing the exchanger, its fluid analysis was verified, and the parameter values of the heat exchanger were collected to create a dataset. Based on that data, the intelligent performance prediction-system was designed. The controlling system analysed the given data to predict the performance of the heat exchanger. The suggested model has a pressure drop of 55 Pa, a heat transfer coefficient of 411 U, and 86% accuracy for the thermal performance prediction process. The proposed model provides better performance by improving heat transfer efficiency and significantly reduces pressure drop.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xiao, J., Wang, S., Ye, S., Wen, J., and Zhang, Z., Multiphysics field coupling simulation for shell-and-tube heat exchangers with different baffles, Numer. Heat Transfer, Part A, 2020, vol. 77, no. 3, pp. 266–283.CrossRef Xiao, J., Wang, S., Ye, S., Wen, J., and Zhang, Z., Multiphysics field coupling simulation for shell-and-tube heat exchangers with different baffles, Numer. Heat Transfer, Part A, 2020, vol. 77, no. 3, pp. 266–283.CrossRef
2.
Zurück zum Zitat Javadi, H., Urchueguia, J.F., Mousavi Ajarostaghi, S.S., and Badenes, B., Numerical study on the thermal performance of a single U-tube borehole heat exchanger using nano-enhanced phase change materials, Energies, 2020, vol. 13, no. 19, p. 5156.CrossRef Javadi, H., Urchueguia, J.F., Mousavi Ajarostaghi, S.S., and Badenes, B., Numerical study on the thermal performance of a single U-tube borehole heat exchanger using nano-enhanced phase change materials, Energies, 2020, vol. 13, no. 19, p. 5156.CrossRef
3.
Zurück zum Zitat Andrzejczyk, R. and Muszynski, T., An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger, Appl. Therm. Eng., 2018, vol. 136, pp. 237–251.CrossRef Andrzejczyk, R. and Muszynski, T., An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger, Appl. Therm. Eng., 2018, vol. 136, pp. 237–251.CrossRef
4.
Zurück zum Zitat Biçer, N., Engin, T., Yaşar, H., Büyükkaya, E., Aydın, A., and Topuz, A., Design optimization of a shell-and-tube heat exchanger with novel three-zonal baffle by using CFD and taguchi method, Int. J. Therm. Sci., 2020, vol. 155, p. 106417.CrossRef Biçer, N., Engin, T., Yaşar, H., Büyükkaya, E., Aydın, A., and Topuz, A., Design optimization of a shell-and-tube heat exchanger with novel three-zonal baffle by using CFD and taguchi method, Int. J. Therm. Sci., 2020, vol. 155, p. 106417.CrossRef
5.
Zurück zum Zitat Frank, J., Volf, M., and Bajić, S., CFD evaluation of the influence of the parts of a shell and tube heat exchanger on heat transfer, in MATEC Web of Conferences, EDP Sciences, 2021, vol. 345, p. 00007 Frank, J., Volf, M., and Bajić, S., CFD evaluation of the influence of the parts of a shell and tube heat exchanger on heat transfer, in MATEC Web of Conferences, EDP Sciences, 2021, vol. 345, p. 00007
6.
Zurück zum Zitat Abu-Hamdeh, N.H., Alsulami, R.A., Rawa, M.J., Aljinaidi, A.A., Alazwari, M.A., Eltaher, M.A., Almitani, K.H., Alnefaie, K.A., Abusorrah, A.M., Sindi, H.F., and Goodarzi, M., A detailed hydrothermal investigation of a helical micro double-tube heat exchanger for a wide range of helix pitch length, Case Stud. Therm. Eng., 2021, vol. 28, p. 101413.CrossRef Abu-Hamdeh, N.H., Alsulami, R.A., Rawa, M.J., Aljinaidi, A.A., Alazwari, M.A., Eltaher, M.A., Almitani, K.H., Alnefaie, K.A., Abusorrah, A.M., Sindi, H.F., and Goodarzi, M., A detailed hydrothermal investigation of a helical micro double-tube heat exchanger for a wide range of helix pitch length, Case Stud. Therm. Eng., 2021, vol. 28, p. 101413.CrossRef
7.
Zurück zum Zitat Bhattad, A., Sarkar, J., and Ghosh, P., Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger, Int. Commun. Heat Mass Transfer, 2018, vol. 91, pp. 262–273.CrossRef Bhattad, A., Sarkar, J., and Ghosh, P., Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger, Int. Commun. Heat Mass Transfer, 2018, vol. 91, pp. 262–273.CrossRef
8.
Zurück zum Zitat Ligus, G., Wasilewski, M., Kołodziej, S., and Zając, D., CFD and PIV investigation of a liquid flow maldistribution across a tube bundle in the shell-and-tube heat exchanger with segmental baffles, Energies, 2020, vol. 13, no. 19, p. 5150.CrossRef Ligus, G., Wasilewski, M., Kołodziej, S., and Zając, D., CFD and PIV investigation of a liquid flow maldistribution across a tube bundle in the shell-and-tube heat exchanger with segmental baffles, Energies, 2020, vol. 13, no. 19, p. 5150.CrossRef
9.
Zurück zum Zitat Wang, K., Bai, C., Wang, Y., and Liu, M., Flow dead zone analysis and structure optimization for the trefoil-baffle heat exchanger, Int. J. Therm. Sci., 2019, vol. 140, pp. 127–134.CrossRef Wang, K., Bai, C., Wang, Y., and Liu, M., Flow dead zone analysis and structure optimization for the trefoil-baffle heat exchanger, Int. J. Therm. Sci., 2019, vol. 140, pp. 127–134.CrossRef
10.
Zurück zum Zitat Xiao, J., Wang, S., Ye, S., Wang, J., Wen, J., and Tu, J., Experimental investigation on pre-heating technology of coal water slurry with different concentration in shell-and-tube heat exchangers with ladder-type fold baffles, Int. J. Heat Mass Transfer, 2019, vol. 132, pp. 1116–1125.CrossRef Xiao, J., Wang, S., Ye, S., Wang, J., Wen, J., and Tu, J., Experimental investigation on pre-heating technology of coal water slurry with different concentration in shell-and-tube heat exchangers with ladder-type fold baffles, Int. J. Heat Mass Transfer, 2019, vol. 132, pp. 1116–1125.CrossRef
11.
Zurück zum Zitat Li, Z.X., Sun, S.Q., Wang, C., Liang, C.H., Zeng, S., Zhong, T., Hu, W.P., and Feng, C.N., The effect of trapezoidal baffles on heat and flow characteristics of a cross-corrugated triangular duct, Case Stud. Therm. Eng., 2022, vol. 33, p. 101903.CrossRef Li, Z.X., Sun, S.Q., Wang, C., Liang, C.H., Zeng, S., Zhong, T., Hu, W.P., and Feng, C.N., The effect of trapezoidal baffles on heat and flow characteristics of a cross-corrugated triangular duct, Case Stud. Therm. Eng., 2022, vol. 33, p. 101903.CrossRef
12.
Zurück zum Zitat Liu, Y., Wen, J., Wang, S., and Tu, J., Numerical investigation on the shell and tube heat exchanger with baffle leakage zones blocked, Int. J. Therm. Sci., 2021, vol. 165, p. 106959.CrossRef Liu, Y., Wen, J., Wang, S., and Tu, J., Numerical investigation on the shell and tube heat exchanger with baffle leakage zones blocked, Int. J. Therm. Sci., 2021, vol. 165, p. 106959.CrossRef
13.
Zurück zum Zitat Arani, A.A.A. and Uosofvand, H., Double-pass shell-and-tube heat exchanger performance enhancement with new combined baffle and elliptical tube bundle arrangement, Int. J. Therm. Sci., 2021, vol. 167, p. 106999.CrossRef Arani, A.A.A. and Uosofvand, H., Double-pass shell-and-tube heat exchanger performance enhancement with new combined baffle and elliptical tube bundle arrangement, Int. J. Therm. Sci., 2021, vol. 167, p. 106999.CrossRef
14.
Zurück zum Zitat Said, Z., Rahman, S.M.A., Assad, M.E.H., and Alami, A.H., Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid, Sustainable Energy Technol. Assess., 2019, vol. 31, pp. 306–317.CrossRef Said, Z., Rahman, S.M.A., Assad, M.E.H., and Alami, A.H., Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid, Sustainable Energy Technol. Assess., 2019, vol. 31, pp. 306–317.CrossRef
15.
Zurück zum Zitat Fares, M., Mohammad, A.M., and Mohammed, A.S., Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids, Case Stud. Therm. Eng., 2020, vol. 18, p. 100584.CrossRef Fares, M., Mohammad, A.M., and Mohammed, A.S., Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids, Case Stud. Therm. Eng., 2020, vol. 18, p. 100584.CrossRef
16.
Zurück zum Zitat Zebua, M.A. and Ambarita, H., September. Numerical simulation of the effect of baffle spacing to the effectiveness of a shell and tube heat exchanger, in IOP Conf. Ser.:Mmater. Sci. Eng., 2018, vol. 420, no. 1, p. 012036. Zebua, M.A. and Ambarita, H., September. Numerical simulation of the effect of baffle spacing to the effectiveness of a shell and tube heat exchanger, in IOP Conf. Ser.:Mmater. Sci. Eng., 2018, vol. 420, no. 1, p. 012036.
17.
Zurück zum Zitat Martic, I., Maslarevic, A., Milovanovic, N., and Markovic, M., Effect of baffle cut and baffle spacing on pressure drop in shell and tube heat exchanger with U tubes, 2020. Martic, I., Maslarevic, A., Milovanovic, N., and Markovic, M., Effect of baffle cut and baffle spacing on pressure drop in shell and tube heat exchanger with U tubes, 2020.
18.
Zurück zum Zitat Maghrabie, H.M., Attalla, M., and Mohsen, A.A., Performance assessment of a shell and helically coiled tube heat exchanger with variable orientations utilizing different nanofluids, Appl. Therm. Eng., 2021, vol. 182, p. 116013.CrossRef Maghrabie, H.M., Attalla, M., and Mohsen, A.A., Performance assessment of a shell and helically coiled tube heat exchanger with variable orientations utilizing different nanofluids, Appl. Therm. Eng., 2021, vol. 182, p. 116013.CrossRef
19.
Zurück zum Zitat Chen, J., Zhao, P., Wang, Q., and Zeng, M., Experimental investigation of shell-side performance and optimal design of shell-and-tube heat exchanger with different flower baffles, Heat Transfer Eng., 2021, vol. 42, no. 7, pp. 613–626.CrossRef Chen, J., Zhao, P., Wang, Q., and Zeng, M., Experimental investigation of shell-side performance and optimal design of shell-and-tube heat exchanger with different flower baffles, Heat Transfer Eng., 2021, vol. 42, no. 7, pp. 613–626.CrossRef
20.
Zurück zum Zitat Iyer, V.H., Mahesh, S., Malpani, R., Sapre, M., and Kulkarni, A.J., Adaptive range genetic algorithm: A hybrid optimization approach and its application in the design and economic optimization of shell-and-tube heat exchanger, Eng. Appl. Artif. Intell., 2019, vol. 85, pp. 444–461.CrossRef Iyer, V.H., Mahesh, S., Malpani, R., Sapre, M., and Kulkarni, A.J., Adaptive range genetic algorithm: A hybrid optimization approach and its application in the design and economic optimization of shell-and-tube heat exchanger, Eng. Appl. Artif. Intell., 2019, vol. 85, pp. 444–461.CrossRef
21.
Zurück zum Zitat Jradi, R., Marvillet, C., and Jeday, M.R., Application of an artificial neural networks method for the prediction of the tube-side fouling resistance in a shell-and-tube heat exchanger, Fluid Dyn. Mater. Process, 2022, vol. 18, pp. 1511–1519.CrossRef Jradi, R., Marvillet, C., and Jeday, M.R., Application of an artificial neural networks method for the prediction of the tube-side fouling resistance in a shell-and-tube heat exchanger, Fluid Dyn. Mater. Process, 2022, vol. 18, pp. 1511–1519.CrossRef
22.
Zurück zum Zitat Xie, C., Yan, G., Ma, Q., Elmasry, Y., Singh, P.K., Algelany, A.M., and Wae-hayee, M., Flow and heat transfer optimization of a fin-tube heat exchanger with vortex generators using Response Surface Methodology and Artificial Neural Network, Case Stud. Therm. Eng., 2022, vol. 39, p. 102445. Xie, C., Yan, G., Ma, Q., Elmasry, Y., Singh, P.K., Algelany, A.M., and Wae-hayee, M., Flow and heat transfer optimization of a fin-tube heat exchanger with vortex generators using Response Surface Methodology and Artificial Neural Network, Case Stud. Therm. Eng., 2022, vol. 39, p. 102445.
23.
Zurück zum Zitat Çolak, A.B., Açıkgöz, Ö., Mercan, H., Dalkılıç, A.S., and Wongwises, S., Prediction of heat transfer coefficient, pressure drop, and overall cost of double-pipe heat exchangers using the artificial neural network, Case Stud. Therm. Eng., 2022, vol. 39, p. 102391.CrossRef Çolak, A.B., Açıkgöz, Ö., Mercan, H., Dalkılıç, A.S., and Wongwises, S., Prediction of heat transfer coefficient, pressure drop, and overall cost of double-pipe heat exchangers using the artificial neural network, Case Stud. Therm. Eng., 2022, vol. 39, p. 102391.CrossRef
24.
Zurück zum Zitat García-Morales, J., Cervantes-Bobadilla, M., Hernández-Pérez, J.A., Saavedra-Benítez, Y.I., Adam-Medina, M., and Guerrero-Ramírez, G.V., Inverse artificial neural network control design for a double tube heat exchanger, Case Stud. Therm. Eng., 2022, vol. 34, p. 102075.CrossRef García-Morales, J., Cervantes-Bobadilla, M., Hernández-Pérez, J.A., Saavedra-Benítez, Y.I., Adam-Medina, M., and Guerrero-Ramírez, G.V., Inverse artificial neural network control design for a double tube heat exchanger, Case Stud. Therm. Eng., 2022, vol. 34, p. 102075.CrossRef
25.
Zurück zum Zitat Zolghadri, A., Maddah, H., Ahmadi, M.H., and Sharifpur, M., Predicting parameters of heat transfer in a shell and tube heat exchanger using aluminum oxide nanofluid with artificial neural network (ANN) and self-organizing map (SOM), Sustainability, 2021, vol. 13, no. 16, p. 8824.CrossRef Zolghadri, A., Maddah, H., Ahmadi, M.H., and Sharifpur, M., Predicting parameters of heat transfer in a shell and tube heat exchanger using aluminum oxide nanofluid with artificial neural network (ANN) and self-organizing map (SOM), Sustainability, 2021, vol. 13, no. 16, p. 8824.CrossRef
26.
Zurück zum Zitat Dhand, D., Kumar, P., and Grewal, J.S., A review of thermal spray coatings for protection of steels from degradation in coal fired power plants, Corros. Rev., 2021, vol. 39, no. 3, pp. 243–268.CrossRef Dhand, D., Kumar, P., and Grewal, J.S., A review of thermal spray coatings for protection of steels from degradation in coal fired power plants, Corros. Rev., 2021, vol. 39, no. 3, pp. 243–268.CrossRef
27.
Zurück zum Zitat More, L.J., Mandavkar, D., Patil, N., and Jagdale, K., Analysis of Temperature Distribution Over the Tubes Of Heat Exchanger Withdifferent Material, 2022. More, L.J., Mandavkar, D., Patil, N., and Jagdale, K., Analysis of Temperature Distribution Over the Tubes Of Heat Exchanger Withdifferent Material, 2022.
28.
Zurück zum Zitat Bahiraei, M., Naseri, M., and Monavari, A., A second law analysis on flow of a nanofluid in a shell-and-tube heat exchanger equipped with new unilateral ladder type helical baffles, Powder Technol., 2021, vol. 394, pp. 234–249.CrossRef Bahiraei, M., Naseri, M., and Monavari, A., A second law analysis on flow of a nanofluid in a shell-and-tube heat exchanger equipped with new unilateral ladder type helical baffles, Powder Technol., 2021, vol. 394, pp. 234–249.CrossRef
29.
Zurück zum Zitat Khishe, M. and Mosavi, M.R., Chimp optimization algorithm, Expert Syst. Appl., 2020, vol. 149, p. 113338.CrossRef Khishe, M. and Mosavi, M.R., Chimp optimization algorithm, Expert Syst. Appl., 2020, vol. 149, p. 113338.CrossRef
30.
Zurück zum Zitat Liu, X., Zhu, H., Yu, C., Jin, H., Wang, C., and Ou, G., Analysis on the corrosion failure of U-tube heat exchanger in hydrogenation unit, Eng. Failure Anal., 2021, vol. 125, p. 105448.CrossRef Liu, X., Zhu, H., Yu, C., Jin, H., Wang, C., and Ou, G., Analysis on the corrosion failure of U-tube heat exchanger in hydrogenation unit, Eng. Failure Anal., 2021, vol. 125, p. 105448.CrossRef
31.
Zurück zum Zitat El-Said, E.M., Elsheikh, A.H., and El-Tahan, H.R., Effect of curved segmental baffle on a shell and tube heat exchanger thermohydraulic performance: Numerical investigation, Int. J. Therm. Sci., 2021, vol. 165, p. 106922.CrossRef El-Said, E.M., Elsheikh, A.H., and El-Tahan, H.R., Effect of curved segmental baffle on a shell and tube heat exchanger thermohydraulic performance: Numerical investigation, Int. J. Therm. Sci., 2021, vol. 165, p. 106922.CrossRef
32.
Zurück zum Zitat Mohammed, M.S., Dakel, S.F., Alshara, A.K., and Alsayah, A.M., Numerical and experimental study of heat transfer in shell-and U-tube heat exchanger with baffles, Chin. J. Geotech. Eng., 2022, vol. 44, no. 5. Mohammed, M.S., Dakel, S.F., Alshara, A.K., and Alsayah, A.M., Numerical and experimental study of heat transfer in shell-and U-tube heat exchanger with baffles, Chin. J. Geotech. Eng., 2022, vol. 44, no. 5.
33.
Zurück zum Zitat Prasad, S.K. and Sinha, M.K., Analysis of Performance for Shell and tube heat exchangers using Baffles, 2021. Prasad, S.K. and Sinha, M.K., Analysis of Performance for Shell and tube heat exchangers using Baffles, 2021.
34.
Zurück zum Zitat Promvonge, P. and Skullong, S., Enhanced thermal performance in tubular heat exchanger contained with V-shaped baffles, Appl. Therm. Eng., 2021, vol. 185, p. 116307.CrossRef Promvonge, P. and Skullong, S., Enhanced thermal performance in tubular heat exchanger contained with V-shaped baffles, Appl. Therm. Eng., 2021, vol. 185, p. 116307.CrossRef
35.
Zurück zum Zitat Mashoofi, N., Pourahmad, S., and Pesteei, S.M., Study the effect of axially perforated twisted tapes on the thermal performance enhancement factor of a double tube heat exchanger, Case Stud. Therm. Eng., 2017, vol. 10, pp. 161–168.CrossRef Mashoofi, N., Pourahmad, S., and Pesteei, S.M., Study the effect of axially perforated twisted tapes on the thermal performance enhancement factor of a double tube heat exchanger, Case Stud. Therm. Eng., 2017, vol. 10, pp. 161–168.CrossRef
36.
Zurück zum Zitat Kumar, P.G., Thangapandian, N., Vigneswaran, V.S., Vinothkumar, S., Prasanth, B.M., and Kim, S.C., Heat transfer, pressure drop, and exergy analyses of a shot-peened tube in the tube heat exchanger using Al2O3 nanofluids for solar thermal applications, Powder Technol., 2022, vol. 401, p. 117299.CrossRef Kumar, P.G., Thangapandian, N., Vigneswaran, V.S., Vinothkumar, S., Prasanth, B.M., and Kim, S.C., Heat transfer, pressure drop, and exergy analyses of a shot-peened tube in the tube heat exchanger using Al2O3 nanofluids for solar thermal applications, Powder Technol., 2022, vol. 401, p. 117299.CrossRef
Metadaten
Titel
Lessen Pressure Drop and Forecasting Thermal Performance in U-Tube Heat Exchanger Using Chimp Optimization and Deep Belief Neural Network
verfasst von
Shailandra Kumar Prasad
Mrityunjay Kumar Sinha
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Optical Memory and Neural Networks / Ausgabe 4/2023
Print ISSN: 1060-992X
Elektronische ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X23040033

Weitere Artikel der Ausgabe 4/2023

Optical Memory and Neural Networks 4/2023 Zur Ausgabe

Premium Partner