Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

22.02.2021

Lifetime Enhancement of Sensor Networks by the Moth Flame Optimization

verfasst von: Ashish Pandey, Abhishek Rajan, Arnab Nandi, Valentina E. Balas

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advancements in wireless communication technologies have facilitated the deployment of large-scale Wireless Sensor Networks (WSNs). Due to the constraint of associated battery power, various optimization structures have been proposed to enhance the lifetime of WSNs. In this article, the concept of supernodes is used along with Moth Flame Optimization algorithm to improve the lifetime of the heterogeneous WSNs. The Moth Flame Optimization algorithm is used to achieve the energy-efficient clustering and energy-aware routing. The performance of Moth Flame Optimization algorithm is compared with the other existing protocol, including Genetic Algorithm and Particle Swarm Optimization algorithm. The effects of varying populations of supernodes and sensor nodes on the network metrics are also analyzed here. The influence of the number of hops on the lifetime is also investigated considering two different positions of the base-station in WSNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lombardo, L., Corbellini, S., Parvis, M., Elsayed, A., Angelini, E., & Grassini, S. (2001). Wireless sensor network for distributed environmental monitoring. IEEE Transactions on Instrumentation and Measurement, 67(5), 1214–1222.CrossRef Lombardo, L., Corbellini, S., Parvis, M., Elsayed, A., Angelini, E., & Grassini, S. (2001). Wireless sensor network for distributed environmental monitoring. IEEE Transactions on Instrumentation and Measurement, 67(5), 1214–1222.CrossRef
2.
Zurück zum Zitat Li, K., Ni, W., Duan, L., Abolhasan, M., & Niu, J. (2018). Wireless power transfer and data collection in wireless sensor networks. IEEE Transactions on Vehicular Technology, 67(3), 2686–2697.CrossRef Li, K., Ni, W., Duan, L., Abolhasan, M., & Niu, J. (2018). Wireless power transfer and data collection in wireless sensor networks. IEEE Transactions on Vehicular Technology, 67(3), 2686–2697.CrossRef
3.
Zurück zum Zitat Arif, M., Wang, G., & Balas, V. E. (2018). Secure VANETs: Trusted communication scheme between vehicles and infrastructure based on fog computing. Studies in Informatics and Control, 27(2), 235–246.CrossRef Arif, M., Wang, G., & Balas, V. E. (2018). Secure VANETs: Trusted communication scheme between vehicles and infrastructure based on fog computing. Studies in Informatics and Control, 27(2), 235–246.CrossRef
4.
Zurück zum Zitat Cao, N., Choi, S., Masazade, E., & Varshney, P. K. (2016). Sensor selection for target tracking in wireless sensor networks with uncertainty. IEEE Transactions on Signal Processing, 64(20), 5191–5204.MathSciNetCrossRef Cao, N., Choi, S., Masazade, E., & Varshney, P. K. (2016). Sensor selection for target tracking in wireless sensor networks with uncertainty. IEEE Transactions on Signal Processing, 64(20), 5191–5204.MathSciNetCrossRef
5.
Zurück zum Zitat Fu, Y., Ling, Q., & Tian, Z. (2012). Distributed sensor allocation for multi-target tracking in wireless sensor networks. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3538–3553.CrossRef Fu, Y., Ling, Q., & Tian, Z. (2012). Distributed sensor allocation for multi-target tracking in wireless sensor networks. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3538–3553.CrossRef
6.
Zurück zum Zitat Guo, P., Liu, X., Cao, J., & Tang, S. (2017). Lossless in-network processing and its routing design in wireless sensor networks. IEEE Transactions on Wireless Communications, 16(10), 6528–6542.CrossRef Guo, P., Liu, X., Cao, J., & Tang, S. (2017). Lossless in-network processing and its routing design in wireless sensor networks. IEEE Transactions on Wireless Communications, 16(10), 6528–6542.CrossRef
7.
Zurück zum Zitat Guo, W., Li, J., Chen, G., Niu, Y., & Chen, C. (2015). A PSO-optimized real-time fault-tolerant task allocation algorithm in wireless sensor networks. IEEE Transactions on Parallel and Distributed System, 26(12), 3236–3239.CrossRef Guo, W., Li, J., Chen, G., Niu, Y., & Chen, C. (2015). A PSO-optimized real-time fault-tolerant task allocation algorithm in wireless sensor networks. IEEE Transactions on Parallel and Distributed System, 26(12), 3236–3239.CrossRef
8.
Zurück zum Zitat Wang, D., Zhang, R., Cheng, X., Quan, Z., & Yang, L. (2017). Joint power allocation and splitting (JoPAS) for SWIPT in doubly selective vehicular channels. IEEE Transactions on Green Communication and Networks, 1(4), 494–502.CrossRef Wang, D., Zhang, R., Cheng, X., Quan, Z., & Yang, L. (2017). Joint power allocation and splitting (JoPAS) for SWIPT in doubly selective vehicular channels. IEEE Transactions on Green Communication and Networks, 1(4), 494–502.CrossRef
9.
Zurück zum Zitat Luo, S., Xu, J., Lim, T. J., & Zhang, R. (2015). Capacity region of MISO broadcast channel for simultaneous wireless information and power transfer. IEEE Transactions on Communication, 63(10), 3856–3868.CrossRef Luo, S., Xu, J., Lim, T. J., & Zhang, R. (2015). Capacity region of MISO broadcast channel for simultaneous wireless information and power transfer. IEEE Transactions on Communication, 63(10), 3856–3868.CrossRef
10.
Zurück zum Zitat Masazade, E., & Kose, A. (2018). A proportional time allocation algorithm to transmit binary sensor decisions for target tracking in a wireless sensor network. IEEE Transactions on Signal Processing, 66(1), 86–100.MathSciNetCrossRef Masazade, E., & Kose, A. (2018). A proportional time allocation algorithm to transmit binary sensor decisions for target tracking in a wireless sensor network. IEEE Transactions on Signal Processing, 66(1), 86–100.MathSciNetCrossRef
11.
Zurück zum Zitat Agrawal, A., Singha, V., Jain, S., & Gupta, R. K. (2018). GCRP: Grid-cycle routing protocol for wireless sensor network with mobile sink. International Journal of Electronics and Communications, 94, 1–11.CrossRef Agrawal, A., Singha, V., Jain, S., & Gupta, R. K. (2018). GCRP: Grid-cycle routing protocol for wireless sensor network with mobile sink. International Journal of Electronics and Communications, 94, 1–11.CrossRef
12.
Zurück zum Zitat Wang, C., Guo, S., & Yang, Y. (2016). An optimization framework for mobile data collection in energy-harvesting wireless sensor networks. IEEE Transactions on Mobile Computing, 15(12), 2969–2986.CrossRef Wang, C., Guo, S., & Yang, Y. (2016). An optimization framework for mobile data collection in energy-harvesting wireless sensor networks. IEEE Transactions on Mobile Computing, 15(12), 2969–2986.CrossRef
13.
Zurück zum Zitat He, Y., He, X., & Wang, T. (2018). Neural network optimization for energy-optimal cooperative computing in wireless communication system. International Journal of Electronics and Communications, 93, 216–223.CrossRef He, Y., He, X., & Wang, T. (2018). Neural network optimization for energy-optimal cooperative computing in wireless communication system. International Journal of Electronics and Communications, 93, 216–223.CrossRef
14.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application specific protocol architecture for wireless micro-sensor networks. IEEE Transactions on Wireless and Communications., 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application specific protocol architecture for wireless micro-sensor networks. IEEE Transactions on Wireless and Communications., 1(4), 660–670.CrossRef
15.
Zurück zum Zitat Muruganathan, S. D., Ma, D. C. F., Bhasin, R. I., & Fapojuwo, A. O. (2005). A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Radio Communications., 43(3), 8–13.CrossRef Muruganathan, S. D., Ma, D. C. F., Bhasin, R. I., & Fapojuwo, A. O. (2005). A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Radio Communications., 43(3), 8–13.CrossRef
16.
Zurück zum Zitat Villas, L. A., Boukerche, A., Ramos, H. S., Oliveira, H. A. B. F., Araujo, R. B., & Loureiro, F. A. A. (2012). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on comput., 62(4), 676–689.MathSciNetCrossRef Villas, L. A., Boukerche, A., Ramos, H. S., Oliveira, H. A. B. F., Araujo, R. B., & Loureiro, F. A. A. (2012). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on comput., 62(4), 676–689.MathSciNetCrossRef
17.
Zurück zum Zitat Xie, D., Zhou, Q., You, X., Li, B., & Yuan, X. (2013). A novel energy-efficient cluster formation strategy: From the perspective of cluster members. IEEE Communications Letters, 17(11), 2044–2047.CrossRef Xie, D., Zhou, Q., You, X., Li, B., & Yuan, X. (2013). A novel energy-efficient cluster formation strategy: From the perspective of cluster members. IEEE Communications Letters, 17(11), 2044–2047.CrossRef
18.
Zurück zum Zitat Yildiz, H. U., Ciftler, B. S., Tavli, B., Bicakci, K., & Incebacak, D. (2018). The impact of incomplete secure connectivity on the lifetime of wireless sensor networks. IEEE Systems Journal, 12(1), 1042–1046.CrossRef Yildiz, H. U., Ciftler, B. S., Tavli, B., Bicakci, K., & Incebacak, D. (2018). The impact of incomplete secure connectivity on the lifetime of wireless sensor networks. IEEE Systems Journal, 12(1), 1042–1046.CrossRef
19.
Zurück zum Zitat Mekikis, P. V., Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2018). Connectivity analysis in clustered wireless sensor networks powered by solar energy. IEEE Transactions on Wireless Communications, 17(4), 2389–2401.CrossRef Mekikis, P. V., Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2018). Connectivity analysis in clustered wireless sensor networks powered by solar energy. IEEE Transactions on Wireless Communications, 17(4), 2389–2401.CrossRef
20.
Zurück zum Zitat Mridula, K. M., & Ameer, P. M. (2018). Three-dimensional sensor network connectivity considering border effects and channel randomness with application to underwater networks. IET Communications, 12(8), 994–1002.CrossRef Mridula, K. M., & Ameer, P. M. (2018). Three-dimensional sensor network connectivity considering border effects and channel randomness with application to underwater networks. IET Communications, 12(8), 994–1002.CrossRef
21.
Zurück zum Zitat Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRef Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRef
22.
Zurück zum Zitat Chand, K. K., Bharati, P. V. & Ramanjaneyulu, B. S. (2012). Optimized energy efficient routing protocol for life-time improvement in wireless sensor networks. IEEE International Conference on Advances in Engineering, Science and Management (ICAESM -2012), 345–349. Chand, K. K., Bharati, P. V. & Ramanjaneyulu, B. S. (2012). Optimized energy efficient routing protocol for life-time improvement in wireless sensor networks. IEEE International Conference on Advances in Engineering, Science and Management (ICAESM -2012), 345–349.
23.
Zurück zum Zitat Parvin, R., & Vasanthanayaki, C. (2015). Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensor Journal, 15(8), 4264–4274.CrossRef Parvin, R., & Vasanthanayaki, C. (2015). Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensor Journal, 15(8), 4264–4274.CrossRef
24.
Zurück zum Zitat Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, Piscataway, 1942–1948. Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, Piscataway, 1942–1948.
25.
Zurück zum Zitat Rashedi, E., Nezamabadi-pour, H. & Saryazdi, S. (2009). GSA: A gravitational search algorithm information sciences, 179(13), 2232–2248. Rashedi, E., Nezamabadi-pour, H. & Saryazdi, S. (2009). GSA: A gravitational search algorithm information sciences, 179(13), 2232–2248.
26.
Zurück zum Zitat Britto, P. X., & Selvan, S. (2019). A hybrid soft computing: SGP clustering methodology for enhancing network lifetime in wireless multimedia sensor networks. Soft Computing, 23(8), 2597–2609.CrossRef Britto, P. X., & Selvan, S. (2019). A hybrid soft computing: SGP clustering methodology for enhancing network lifetime in wireless multimedia sensor networks. Soft Computing, 23(8), 2597–2609.CrossRef
27.
Zurück zum Zitat Fradj, A. B., Anane, R., & Bouallegue, R. (2019). Opportunistic routing protocols in wireless sensor networks. Wireless Personal Communications, 104(3), 921–933.CrossRef Fradj, A. B., Anane, R., & Bouallegue, R. (2019). Opportunistic routing protocols in wireless sensor networks. Wireless Personal Communications, 104(3), 921–933.CrossRef
28.
Zurück zum Zitat Anandh, S. J., & Baburaj, E. (2020). Energy efficient routing technique for wireless sensor networks using ant-colony optimization. Wireless Personal Communications, 114(4), 3419–3433.CrossRef Anandh, S. J., & Baburaj, E. (2020). Energy efficient routing technique for wireless sensor networks using ant-colony optimization. Wireless Personal Communications, 114(4), 3419–3433.CrossRef
29.
Zurück zum Zitat Mirjalili, S. (2015). Moth-Flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.CrossRef Mirjalili, S. (2015). Moth-Flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.CrossRef
30.
Zurück zum Zitat Goldberg, D. E. (1989). Genetic algorithm in search, optimization and machine learning. New York: Addison. Goldberg, D. E. (1989). Genetic algorithm in search, optimization and machine learning. New York: Addison.
Metadaten
Titel
Lifetime Enhancement of Sensor Networks by the Moth Flame Optimization
verfasst von
Ashish Pandey
Abhishek Rajan
Arnab Nandi
Valentina E. Balas
Publikationsdatum
22.02.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08156-1

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt